

RUHR-UNIVERSITÄT BOCHUM

MULTI-OBJECTIVE OPTIMISATION FOR THE INVERSE ANALYSIS OF DESIGN REQUIREMENTS FOR LOW TECHNOLOGY READINESS LEVEL TECHNOLOGIES

Katharina Esser, Valentin Bertsch, Jonas Finke | 1st of July 2024 | EURO 2024 | katharina.esser@rub.de

Contents

- 1. Motivation
- 2. Methods
- 3. Preliminary results
- 4. Conclusion and outlook

Motivation

Background

Motivation

- Low technology readiness level (TRL) technologies:
 - Highly uncertain
 - Lacking in models and simulations
 - Lacking in research

· Relevance:

- Potentials for future energy systems
- Low TRL =
 - High design flexibility
 - Low invested assets

Aim

Methods

Inverted methodology – general approach (1)

Input parameters:

- Demand
- Supply
- Capacities
- •
- Technologyparameters:
 - Cost
 - Efficiency
 - ...

Variables & output:

- Capacity investments
- Operation time series
- Overall costs
- Overall emissions
- ...

Inverted methodology – general approach (2)

Inverted methodology – general approach (3)

- Problem formulation:
 - a) Chose or define method to solve multi-objective optimisation problems
 - b) Apply method to **inverted** methodology
- 2. Generate set of **Pareto-optimal solutions**:
 - a) Chose or define approach to **build a Pareto-front**
 - b) Apply approach to **inverted** methodology
- 3. Conduct **trade-off analysis** and further research

1a) Problem formulation – general method

- Augmented epsilon-constraint method (AUGMECON):
 - Reformulate all but one objective function into constraints
 - Introduce positive constant $c \approx 10^{-6} \dots 10^{-3}$
 - Introduce positive slack variables s
 - Transform inequalities into equations
 - Give constraints an upper bound ε

Applied Energy 2023. https://doi.org/10.1016/j.apenergy.2022.120521

Optimise only the remaining objective function

1b) Problem formulation – inverted approach

- 1. Introduce new variable to system:
 - v^{investCost}opt
- 2. Insert new quadratical term into cost-describing function:
 - $investCost_{opt}$ investLP
 - a) Use term in new objective function:
 - $min(totalCost + c \cdot s)$ s.t. $max v^{investCost_{opt}} + s = v^{investCost_{opt}}$
 - RQ: lower limits of total system costs where new technology is still invested

- b) Use term as new constraint:
 - $max (v^{investCost_{opt}} + c \cdot s)$ s.t. min totalCost - s = totalCost
 - RQ: upper limits for a new technologie's investment cost

Find Pareto-optimal solutions

2a) Pareto solutions – general approach

Generating Pareto-fronts:

- Perform two lexiographic optimisations to determine single-objective optima as boundaries
- 2. Decide on number and distribution of caps $(= \text{upper bounds } \varepsilon)$
- Solve problem for each cap with multiobjective-optimisation

systems, Applied Energy 2023, https://doi.org/10.1016/j.apenergy.2022.120521

2a) Pareto solutions – inverted approach

Preliminary results

General interpretation

First simulations

Small testing system: 1e9 30000 1.0 -Backbone 25000 Objective: $max \ v^{investCost_{opt}}$ 0.8 FUR/MWh) Constraint: $totalCost = min \ totalCost$ 20000 15000 S Germany, 2050 Spatial resolution: 1 node 10000 Temporal resolution: 730h 0.2 -5000 CB count 0.0 7.9 7.6 7.7 7.8 8.0 8.1 8.2 7.5 1e9 totalCost (EUR/MW)

Conclusion and outlook

Conclusion and outlook

Conclusion:

- Motivation: Potentials of low TRL technologies and their absence in current research/energy models
- Aim: Develope novel inverted approach to design low TRL technologies
- Method: Multi-objective inverse (MOIn) optimisation based on AUGMECON
- Results: Work in progress

• Outlook:

- Iteratively advance method:
 - Refine mathematical formulation
 - Incorporate more objectives and enlargen system
 - Explore potentials and limitations

RUHR-UNIVERSITÄT BOCHUM

THANK YOU FOR YOUR ATTENTION

Contact: Katharina Esser | Katharina.esser@rub.de | www.ee.rub.de