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Motivation

▪ Application case: serial-batch scheduling in the metal-processing industry
▪ Laser cutting

family A

(aluminium, 22 mm)

family B

(stainless steel, 15 mm)

Decisions:

1. Batching 

2. Scheduling

1.1 Capacity-Checking 

(2D- Nesting)
ML-Approximation
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Agenda

▪ Simple approximation methods

▪ Hierarchical integration of the approximate anticipation 
by machine learning

▪ Prediction framework
▪ Instance generation

▪ Feature engineering

▪ Results
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Simple approximation methods
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(SA-E)
b) Conservative I

(SA-CH))

c) Conservative II 

(SA-MBR)
d) computed
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Simple approximation methods



Aykut Uzunoglu 6Approximate anticipation by Machine Learning

2000

(9) Final instruction

Hierarchical integration of the approximate anticipation 
by machine learning

(5) Anticipated  
reaction

(3) Hypothetical
Instruction

Planning-System
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Serial-batch scheduling

Machine learning

Complex nesting

Cutting machine(s)

Feasibility Potential batches

Batches with items

Scheduled batches with items
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Complex nesting:

• Two-dimensional strip 

packing problem

• Highly irregular shapes 

(concave with holes)

• Free rotations

Serial-batch scheduling:

• Batching

• Allocation

• Sequencing
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Prediction Framework

PCA

DeepNest

• Linear models, e.g., Ridge regression, Elastic net

• Linear models with polynomial features

• Neighborhood and kernel-based models, e.g., k-nearest 
neighbors regression, Support Vector Regression

• Decision tree based ensemble methods, e.g., Extremely 
randomized trees, Bagging regression trees, (Stochastic) 
Gradient boosted decision trees

• (Deep) Neural networks
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> Prediction framework

Instance Generation

▪ Generation of complex items based on 
▪ 50 (10+20+20) elementary items 

▪ 4 scaling variations in width, 3 in height → 12 scaling variations

▪ Every scaling variation is perturbated 10 times → 120 scaling variations

▪ In total: 50 * 120 = 6,000 items

( )jh N

( )jh Q

( )jh HN

( )jw XL

( )jw S

( )jw M

( )jw L
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>Prediction framework

Instance Generation

createInstances(𝑵𝒄 := number of instances per class, 𝒍𝒃𝒏, 𝒖𝒃𝒏 , shapeRepository[ ])

For each OW ∈ {SW, MW, LW} // object width - 3

For each ITA ∈ {CV, CA, CX, CV+CA, CV+CX, CA+CX, CV+CA+CX} // item type assortment - 7 

For each ITH ∈ {WH, SH} // item type heterogeneity - 2

For each IWA ∈ {S+M, M+L, L+XL, S+M+L, M+L+XL, S+M+L+XL} // item width assortment - 6

For each IHA ∈ {Q, HN, N, Q+HN, Q+N, HN+N, Q+HN+N} // item height assortment – 7 

For i = 1 to 𝑁𝑐 = 50 // for each of the 1,764 instance classes; in total: 88,200 CNP instances

𝑏𝑒𝑡𝑎𝐼𝑇𝐴
𝑅 := ~U(BD); 𝑏𝑒𝑡𝑎𝐼𝑊𝐴

𝑅 := ~U(BD); 𝑏𝑒𝑡𝑎𝐼𝐻𝐴
𝑅 := ~U(BD);

𝑎𝑡𝑡𝑃𝑒𝑟𝑚𝐼𝑇𝐴:= getPerm(ITA); 𝑎𝑡𝑡𝑃𝑒𝑟𝑚𝐼𝑊𝐴 := getPerm(IWA); 𝑎𝑡𝑡𝑃𝑒𝑟𝑚𝐼𝐻𝐴 := getPerm(IHA);

S[ ] := getShapeSubsets (shapeRepository[ ], ITA, ITH, IWA, IHA)

n := ~U (𝑙𝑏𝑛 = 50, 𝑢𝑏𝑛 = 150)

For  j = 1 to n

𝑡𝑦𝑝𝑒𝑗 := getTypeAttribute (𝑏𝑒𝑡𝑎𝐼𝑇𝐴
𝑅 , 𝑎𝑡𝑡𝑃𝑒𝑟𝑚𝐼𝑇𝐴, ITA); // e.g., CX

𝑤𝑗 := getWidthAttribute (𝑏𝑒𝑡𝑎𝐼𝑊𝐴
𝑅 , 𝑎𝑡𝑡𝑃𝑒𝑟𝑚𝐼𝑊𝐴, IWA); // e.g., L

ℎ𝑗 := getHeightAttribute (𝑏𝑒𝑡𝑎𝐼𝐻𝐴
𝑅 , 𝑎𝑡𝑡𝑃𝑒𝑟𝑚𝐼𝐻𝐴, IHA); // e.g., IH

item := selectItemFromSubset (S[ ], 𝑡𝑦𝑝𝑒𝑗 , 𝑤𝑗, ℎ𝑗) 

addItemToInstance (item);
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▪ Problem Instance Encoding: Aggregated Geometrical Representation instead of 
“Bag-of-Words” 

▪ Geometrical Representation: Sum of Area (and variations), Number of vertices …

▪ Advantage: more flexibility in terms of input dimension
▪ Machine Learning Model can be used even for instances with new items

▪ Dimension reduction methods can be used straightforward

> Prediction framework

Feature engineering
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>Prediction framework

Feature engineering

▪ Basic instance features

▪ 43 item properties (like ℎ𝑗,                       - rectangularity of the 

convex hull,                        - rel. number of reflex interior angles, …)

▪ Aggregation function for calculating instance features: 
SUM, MED (median), MIN, MAX, VAR (variance), Q1 (first quartile), 
Q3 (third quartile), P10 (10% percentile), P90 (90% percentile), and 
SKEW (Fisher-Pearson coefficient of skewness).

→430 features

▪ Additional instance features (22):

→ 452 instance features (TIF) 
→ reduced set with 189 features (RIF) without 
computationally complex features

Feature Description 

n  Total number of items 

W  Width of the strip 

ˆ EH  Predicted height based on the area of the enclosing polygon 

ˆ CHH  
Predicted height based on the area of the enclosing polygon’s convex 

hull 

ˆ MBRH  Predicted height based on the area of the enclosing polygon’s MBR 

Dn  

Number of different item categories; two items have a different category 

if they are not completely identical regarding the combination of the 

attributes { , , }BT CV CA CX , IW {S, M, L, XL}, and 

{ , , }IH Q HN N . 

Dh n n=  Heterogeneity of items 

# IpCMIN   Minimum number of items regarding all item categories 

# IpCMAX   Maximum number of items regarding all item categories 

# IpCMEAN   Mean of the number of items regarding all item categories 

# IpCMED   Median of the number of items regarding all item categories 

# IpCVAR   Variance of the number of items regarding all item categories 

# IpCSKEW   Skewness of the number of items regarding all item categories 

# IpCQ1   First quartile of the number of items regarding all item categories 

# IpCQ3   Third quartile of the number of items regarding all item categories 

# IpCP10   10% percentile of the number of items regarding all item categories 

# IpCP90   90% percentile of the number of items regarding all item categories 

LIp  Percentage shares of large items ( 0.75jw W  ); * 

SIp  Percentage shares of small items ( 0.25jw W  ); * 

HRp  Percentage shares of items with a high rectangularity ( 0.9E

jr  ); * 

LRp  Percentage shares of items with a low rectangularity ( 0.5E

jr  ); * 

NCONp  Percentage shares of non-convex items (items with 0XIA

jn  ) 

COMPp  Percentage shares of complex items (items with 1jn  ) 
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Results

RM 
RIF TIF

RMSE mean CT [seconds] RMSE mean CT [seconds]

Polynomial 
elastic net (PEN)

471.58 42.19 383.96 240.40

Bagging 
regression tree 

with PEN
470.84 3,284.89 383.22 17,082.95

Neural network 374.96 6,135.63 339.17 56,569.90

SA-MBR 1,230.48 [RMSE]
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Results
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Conclusions

▪ Outlook
▪ Prediction Intervalls → Uncertainty Quantification, Bayesian methods

▪ Extension to 3D-Nesting: Capacity Checking, Batch Processing Time

▪ How to include the ML-model into the hierarchical problem?

 
Over-

estimations 

Underestimations  

below or equal 

5% 10% 

SA-MBR 62.4% 79.2% 89.9% 

NN  

with PCA(98%), 

“DiffLab”, and  

RIF 60.8% 92.9% 98.6% 

TIF 58.5% 93.4% 98.8% 
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