

RUHR-UNIVERSITÄT BOCHUM

INTEGRATING ENERGY SYSTEM MODELLING AND LIFE CYCLE ASSESSMENT FOR MULTI-OBJECTIVE OPTIMISATION OF ENERGY SYSTEMS

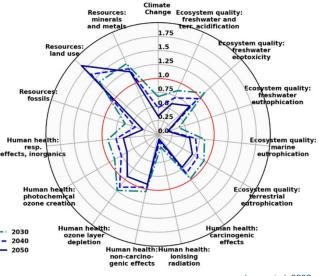
Jonas Finke, Sophie Pathe, Sami Karsli, Valentin Bertsch # 25.03.2022 # jonas.finke@rub.de, sophie.pathe@rub.de

Agenda

- Motivation
- Method
- Case Study
- Conclusion & Outlook

Motivation

Why Energy System Modelling (ESM)?


- Energy sector transformation to mitigate climate change
- Economic, environmental and societal challenges
- Energy system models provide insights and support complex decisions

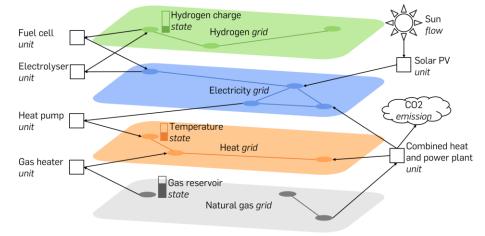
Why Life Cycle Assessment (LCA)?

- Energy systems have large environmental impacts
- Environmental sustainability involves many criteria
- With renewables, there is a shift...

4

- ...from use to construction phase
- ...from GHG emissions to other environmental impacts

Why Integrate LCA and ESM?


- Endogenisation of LCA in ESM allows...
 - ...to perform an **systemic** LCA of the energy system.
 - ...to **constrain** environmental impacts as boundary conditions.
 - ...to **optimise** environmental impacts as objective functions.
- Thereby, ...
 - ...environmental interests of stakeholders can be considered equivalently to costs.
 - ...investigation of interdependencies and correlations between costs and different environmental impacts is possible.
 - ...multiple impact categories (or costs) can be used as objectives to calculate multiobjective Pareto fronts.
 - ...efficient (i.e. Pareto-optimal) decisions are facilitated.

Chair of Energy Systems & Energy Economics BOCHUM

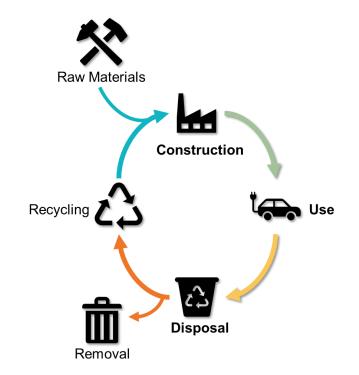
Method

Energy System Optimisation Framework Backbone

- Network Model
 - Highly adaptable structure
 - Various energy carriers and sectors
 - Flexible spatial and temporal resolution
 - High technological detail
 - Stochastic modelling
- Optimisation
 - Investment and operational planning
 - Cost minimisation
 - Various constraints
- Open Source

$$\begin{aligned} v_{\rm BB}^{\rm obj} &= \\ \sum_{f,t} p_{f,t}^{\rm probability} \cdot \left(v_{f,t}^{\rm vomCost} + v_{f,t}^{\rm fuelCost} + v_{f,t}^{\rm startupCost} + v_{f,t}^{\rm shutdownCost} + v_{f,t}^{\rm rampCost} + v_{f,t}^{\rm stateCost} + v_{f,t}^{\rm penalties} \right) \\ &+ v_{f,t}^{\rm fomCost} + v_{f,t}^{\rm unitInvestCost} + v_{f,t}^{\rm lineInvestCost} \end{aligned}$$

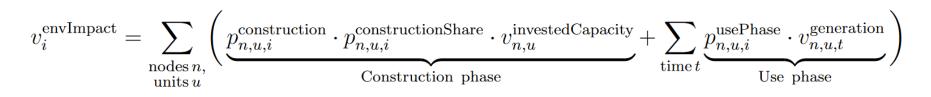
Helistö et al., Backbone – An Adaptable Energy Systems Modelling Framework, Energies 2019.



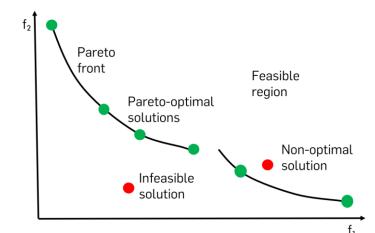
RUHR UNIVERSITÄT BOCHUM

7

Life Cycle Assessment – General Aspects


- Method for integrated ecological assessment of products
- Quantification of inputs, outputs and potential environmental impacts throughout the life cycle
 - Construction phase
 - Use phase
 - Disposal phase
- Environmental impacts are...
 - ...related to the product's quantitative benefit, e.g. per electricity output
 - ...aggregated into impact categories, e.g. climate change

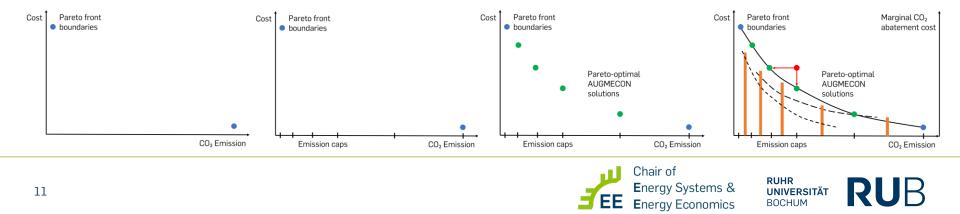
Integrating Life Cycle Assessment in Backbone

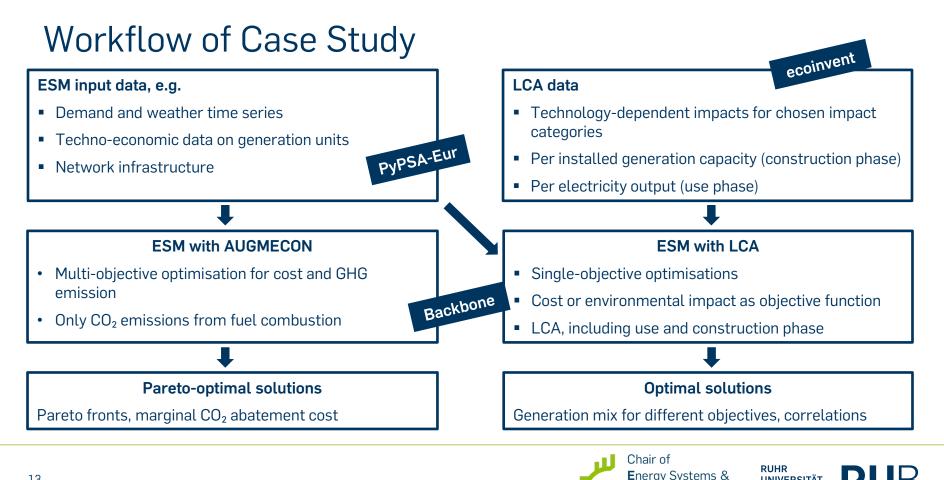

- New parameters $\,p\,$ for environmental impacts from...
 - ...investments in units (construction phase)
 - ...outputs of units (use phase)
- New equations / variables v for environmental impacts to be used as...
 - ...constraints
 - ...objective functions
- For each impact category i ,

Multi-Objective Optimisation – General Aspects

- Consider simultaneous optimisation of multiple real objective functions
- Notion of optimum: set of Pareto-optimal solutions, so called *Pareto-front*
- A solution is called *Pareto-optimal* if improvements of one objective necessarily lead to deterioration of another

- AUGMECON method to generate Pareto-optimal solutions
 - Reformulate all but one objective to constraints
 - Introduce slack variables


$$\min_{x \in V} \{f_1(x), f_2(x), \dots, f_k(x)\} \longrightarrow \min_{x \in V} \left(f_j(x) + c\sum_{i \in K} s_i\right) \text{ s.t. } f_i(x) + s_i = \varepsilon_i \ \forall \ i \in K \setminus \{j\}$$

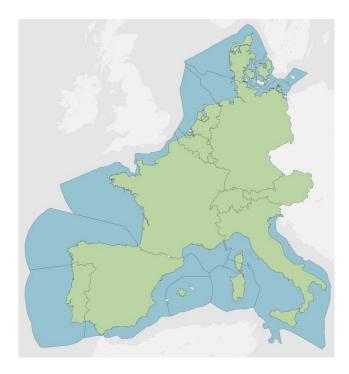

Mavrotas, Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems, Applied Mathematics and Computation 2009.

Implementing AUGMECON in Backbone

- Implementation for two objectives, e.g. cost and one environmental impact category
- Two parts
 - New objectives and constraints in Backbone (emission objective, AUGMECON)
 - "External" python code with 4 steps to run different versions of Backbone (figure below)
- Method adaptable to more impact categories

Case Study

UNIVERSITÄT BOCHUM


neray Economics

Western & Southern European Power System Model

- Power network model based on PyPSA-Eur
- Including 11 countries
- Modelling one year at hourly resolution
- Investment planning for
 - Generation: solar PV, onshore & offshore wind, gas
 - Storage: battery

14

- Cost and demand assumptions for 2050¹
- LCA data from ecoinvent database
- Including 4 impact categories

Hörsch et al., *PyPSA-Eur: An Open Optimisation Model of the European Transmission System*, Energy Strategy Reviews 2018. (See also <u>https://github.com/PyPSA/pypsa-eur)</u>

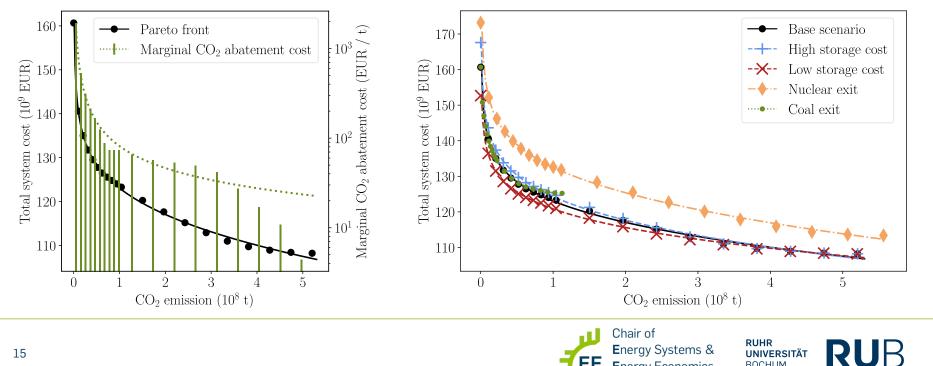
¹ Largely based on Pietzcker et al., *Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonisation of the EU power sector*, Applied Energy 2021. ecoinvent database, <u>https://ecoinvent.org/the-ecoinvent-database/</u>

RUHR UNIVERSITÄT BOCHUM

RUB

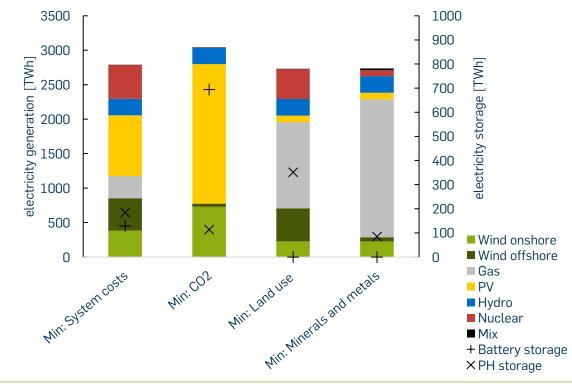
Pareto Fronts for Costs and direct CO₂ Emissions

Objectives' ranges and marginal CO₂ abatement cost


 Scenarios: coal exit, nuclear exit and storage cost (battery $\pm 25\%$, H₂ $\pm 15\%$)

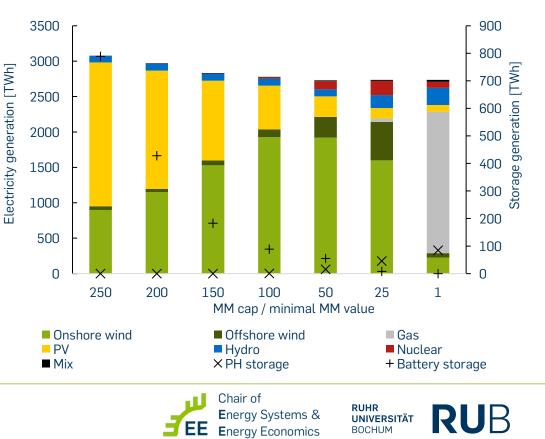
FF

Energy Economics


UNIVERSITÄT

BOCHUM

Generation Mix for Different Objectives Including LCA


- PV prefered for minimal CO₂emissions
- Gas prefered for min. land use and min. minerals and metals
- Great use of battery storage for min. CO₂, no battery at all for min. land use and min. minerals and metals
- Low PH storage for min. CO₂ and min. minerals and metals
- No nuclear for min. CO₂

Chair of Energy Systems & Energy Economics

Minimise Climate Change with Resource Caps

- Minimising climate change objective...
- ...while allowing different multiples of the minimal value for minerals and metals (MM)
- PV and battery storage decrease with allowed use of MM
- Wind increases with decreasing allowed MM
- Major use of gas only for very low allowed MM
- Conflicting objectives

Conclusion & Outlook

Conclusion & Outlook

- Implemented method enables for energy systems to...
 - ...perform a systemic LCA.
 - ...optimise and constrain environmental impacts.
 - ...optimise system costs and an environmental impact simultanously.
- Case study reveals synergies and conflicts between objectives
- Energy systems differ substantially for different optimisation objectives

Future work

- Sector-coupled systems
- Optimise more than two impact categories at the same time
- Prospective LCA

Thank you for your attention!

Questions?

Suggestions?

Comments?

Backup Slides

Correlations Between Impact Categories

- Rows: Scenario minimised for respective impact category
- Columns: Environmental impact in respective category
- Values: Normalised distance from lowest achievable impact
- Human health categories:
 - Conflict with CO₂ (dotted frame)
 - Synergy with freshwater ecotoxicity (dashed frame)

			<u> </u>			Legend (normalized distance)			small	medium	large
Min: CO2	0.00	31.32	3.01	3.69	11.68	12.86	17.52	8.22	18.90	207.43	1.45
Min: Climate change total	0.12	0.00	3.49	4.28	15.00	17.21	20.75	9.33	23.01	243.74	2.19
Min: Marine eutrophication	181.05	188.76	0.00	0.03	3.12	5.15	1.17	0.89	4.57	12.96	0.97
Min: Terrestrial eutrophication	192.04	197.99	0.03	0.00	2.69	4.42	1.09	0.90	3.67	12.33	0.84
Min: Freshwater ecotoxicity		1887.80	2.35	2.99	0.00	0.05	0.06	0.61	0.12	0.16	0.43
Min: Carcinogenic effects		1692.84	2.19	2.63	0.02	0.00	0.10	0.85	0.14	0.18	0.36
Min: Non-carcinogenic effects	2486.70	2195.70	2.60	3.62	0.09	0.36	0.00	0.17	0.19	0.56	0.55
Min: Respiratory effects	i 🛒	1436.56	1.43	2.11	0.41	0.96	0.08	0.00	0.20	3.13	0.48
Min: Land use	1605.23	1459.11	1.69	2.09	0.17	0.36	0.09	0.56	0.00	1.43	0.30
Min: Minerals and metals	2758.01	2438.66	3.20	4.35	0.10	0.30	0.03	0.36	0.28	0.00	0.54
Min: System costs		445.15	1.49	1.62	2.86	2.60	5.48	3.29	5.01	67.30	0.00
CO2 control to the control of the co											

Chair of Energy Systems & Energy Economics

Clinto Native Rendering Fredher Cart Autorit Reel