

RUHR-UNIVERSITÄT BOCHUM

ENERGY SYSTEM MODELLING TO SUPPORT MANAGERIAL DECISION-MAKING IN THE ENERGY SECTOR: SELECTED INSIGHTS AND PITFALLS

Valentin Bertsch, Jonas Finke EURO 2022, Espoo, Finland 04/07/2022 Energy System Modelling to Support Managerial Decision-Making in the Energy Sector: Selected Insights and Pitfalls Agenda

- Motivation
- Test system
- Using energy system models (ESMs) to support managerial decisions
- Selected insights
- Conclusions and outlook

George Edward Pelham Box (1919–2013)

RUR

Motivation

- Energy system models have been developed and used for several decades to support decision makers in governments and companies in (sustainable) energy system planning
 - Typically central-planning approach
 - Simplifications and assumptions are made, e.g. for computational reasons
 - Inherent part of any modelling process, but: effects can remain unseen when only considering ESM results at the macroscopic level
- Using ESM output to support managerial decisions of energy companies (e.g. related to individual investment projects) reveals a number of such hidden effects
- ⇒ Question(s) arising: usefulness and robustness of the ESM output also at the macroscopic level?

RUHR

UNIVERSITÄT

3

Test system for illustration of selected insights

- Target year 2030
- Techno-economic data from Pietzcker et al. 2021, including CO₂ price of 129 €/t
- RES-E Shares based on National Energy and Climate Plans
 - FR: 43%
 - ES: 80%
 - PT: 87%

4

- Network topology, time series for demand and weather, conventional generation capacities, aggregation from PyPSA-Eur (<u>https://arxiv.org/abs/1806.01613</u>)
- 1 MW min. installed capacity for all RES-E

Source: Pietzcker, R., Osorio, S., Rodrigues, R. (2021) Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector. Applied Energy 293, 116914. doi:10.1016/j.apenergy.2021.116914

Chair of Energy Systems & Energy Economics

RUHR UNIVERSITÄT BOCHUM

RUR

"Standard" Modelling Approach

- Find cost minimal solution of technology mix to be installed to achieve given constraints (e.g., RES share or emissions constraint)
- Typical approach (unless specifically analysing grid): One node per country
- Results
 - Technology mix and distribution across regions
 - Fuel use and emissions
 - System costs
- Drawback: cost-min objective function → no information on technology profitability from investor's perspective → economic feasibility in liberalised market(s)?
- "Solution": use further ESM output for ex-post profitability assessment (outside the main ESM)
 - Time series of marginals
 - Generally accepted as good indicator / proxy for prices

RUHR

UNIVERSITÄT

Selected insights: installed capacities vs. IRR

- Least cost solution seems to have a strong preference for solar PV over wind power
 - Driven by cost assumptions only?
 - Impact of modelling decisions?
- At the same time, IRR of solar PV much lower than that of wind power
 - What happens?

Source: Finke, J., Bertsch, V. (2022) Work in Progress.

RUHR UNIVERSITÄT BOCHUM

Selected insights (cont'd): curtailment and market values

- Not surprisingly, theoretical full load hours of solar PV in Spain and Portugal higher than in France
- Highest PV curtailment in Portugal
- Solar PV market values (MVs) much lower than time-averaged power prices (marginal costs)
- RES cannibalisation effect known
- \Rightarrow Impact of modelling approach?

Source: Finke, J., Bertsch, V. (2022) Work in Progress.

RUHR UNIVERSITÄT BOCHUM

Implications of "one-node-per-country" modelling

- Least-cost optimisation identifies technologies that cover demand under given (RES) constraints in cost-minimal way
- Implications of representing each country by one node
 - In particular in larger countries, high heterogeneity of RES potentials (quality) across regions
 - Using only one node means using average RES generation profiles \rightarrow loss of heterogeneity
 - Quality of individual regions overestimated or underestimated
- Curtailment: mixed effects
 - Overestimation because entire RES expansion based on one generation profile only
 - Underestimation because no grid within countries is considered when using one node only
- Implications related to market values
 - Using one profile only leads to overestimation of simultaneity and merit order effect, hence underestimation of market values

\Rightarrow Higher resolution approach required

Selected insights for increased spatial granularity

- Increased onshore wind expansion in (north-west) Spain (",windy" region)
- Regional differences within countries reveal heterogeneity (e.g., exporting and importing regions)

RUHR

BOCHUM

UNIVERSITÄT

Selected insights for increased spatial granularity (cont'd)

- Heterogeneity: e.g., Onshore Wind profitability in PT S, ES N-W compared to other regions in these countries
- Wind offshore: 1 MW min installed capacity per technology and region; low full load hours in corresponding regions lead to low profitability

Source: Finke, J., Bertsch, V. (2022) Work in Progress.

Selected insights for increased spatial granularity (cont'd)

- Market values for wind power generally higher than for solar power (lower capacity expansion leading to lower merit order / cannibalisation effect)
- Strong heterogeneity across regions within countries

Source: Finke, J., Bertsch, V. (2022) Work in Progress.

Chair of

EE

Energy Systems &

Energy Economics

RUHR UNIVERSITÄT BOCHUM

Counteracting effects: full load hours vs. market values

- Obvious:
 - Profitability (IRR) increases with increasing full load hours and market values
- Least-cost ESMs are "agnostic" of market values
 - Qualitatively, higher full load hours will (all else equal) lead to lower market values
- Regions with lower full load hours potentially interesting for investors
 - Risk of "followers" → decreasing market value

			Full load hours (h)															
		700	750	800	850	006	950	1000	1050	1100	1150	1200	1250	1300	1350	1400	1450	1500
Market value (EUR/MWh)	20	-5%	-4%	-4%	-3%	-3%	-2%	-2%	-2%	-1%	-1%	0%	0%	0%	1%	1%	1%	2%
	25	-3%	-3%	-2%	-2%	-1%	0%	0%	0%	1%	1%	2%	2%	3%	3%	3%	4%	4%
	30	-2%	-1%	0%	0%	1%	1%	2%	2%	3%	3%	4%	4%	5%	5%	6%	6%	6%
	35	0%	0%	1%	2%	2%	3%	3%	4%	5%	5%	6%	6%	7%	7%	7%	8%	8%
	40	1%	2%	2%	3%	4%	4%	5%	6%	6%	7%	7%	8%	8%	9%	9%	10%	10%
	45	2%	3%	4%	4%	5%	6%	6%	7%	8%	8%	9%	9%	10%	11%	11%	12%	12%
	50	3%	4%	5%	6%	6%	7%	8%	8%	9%	10%	10%	11%	12%	12%	13%	13%	14%
	55	5%	5%	6%	7%	8%	8%	9%	10%	10%	11%	12%	12%	13%	14%	14%	15%	16%
	60	6%	6%	7%	8%	9%	10%	10%	11%	12%	12%	13%	14%	15%	15%	16%	17%	17%
	65	7%	7%	8%	9%	10%	11%	12%	12%	13%	14%	15%	15%	16%	17%	17%	18%	19%
	70	7%	8%	9%	10%	11%	12%	13%	14%	14%	15%	16%	17%	17%	18%	19%	20%	20%
	75	8%	9%	10%	11%	12%	13%	14%	15%	16%	16%	17%	18%	19%	20%	20%	21%	22%
	80	9%	10%	11%	12%	13%	14%	15%	16%	17%	18%	19%	19%	20%	21%	22%	23%	24%

Work in progress Outlook: Modelling to Generate Alternatives (MGA)

- \rightarrow Example: Germany 2035
- MGA identifies different alternatives that are highly similar in solution space (e.g., < X% higher system costs compared to techno-economic optimum) but differ substantially in variable space (e.g., technologies expanded)
- Reality doesn't follow least-cost path
- MGA can help identify a range of possible
 developments
 and their
 impacts on RES-E profitability
 onwind solar
 of onwind solar
 offwind solar

Hörsch et al., *PyPSA-Eur: An Open Optimisation Model of the European Transmission System*, Energy Strategy Reviews 2018. (See also <u>https://github.com/PyPSA/pypsa-eur</u>)

13 ¹ Largely based on Pietzcker et al., *Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonisation of the EU power sector*, Applied Energy 2021.

Conclusions

- Least-cost central planning ESMs are agnostic of managerial investment considerations
- They can nevertheless provide useful insights to support managerial decisions
 - Besides input data assumptions, modelling decisions may have a big impact
 - Important to be aware of potential pitfalls when interpreting results
 - Otherwise, usefulness of results questionable not just for potential investors, but also on the macroscopic level
 - Macroscopic level results often intended to inform policy makers or regulators
 - Their task is to create market conditions where investors have an interest to invest
 - Otherwise, renewable targets cannot be achieved
- Investment decisions are managerial decisions
- "Modelling for insights, not numbers" \rightarrow modelling cannot replace thinking
- Further research needed for improved understanding of effects (e.g., consider profitability as part of MGA or multi-objective optimisation, ...)

Thank you very much for your attention!

Contact data:

Prof. Dr. Valentin Bertsch

Chair of Energy Systems & Energy Economics (EE) RUHR-UNIVERSITÄT BOCHUM

Building IC | 2nd Floor | Room 185 Universitätsstr. 150 | 44801 Bochum | Germany Phone: +49-(0)234-32-26357 Email: <u>valentin.bertsch@ee.rub.de</u> URL: <u>https://ee.rub.de/index-eng.html</u>

