RUB

RUHR-UNIVERSITÄT BOCHUM

TITIT

OR 2024 IN MUNICH

Energy Economics

Using the **flexibility** of the thermal mass of buildings to assess **emission reduction potentials**— a case study for Ireland and Germany

Christine Nowak

Agenda

- Introduction
 - Motivation
 - Related Literature
 - Research Questions
- Methods
 - Setup of Building Models
 - Archetype Buildings
 - Input Data
- Results
 - Thermal Flexibility
 - Emission Reductions
- Limitations & Outlook

Motivation

3/18

major energy demand in residential stock

60–70% of final energy consumption in residential buildings for **space heating** in Ireland and Germany (2020) [1, 2]

 \rightarrow however: shift to **renewable heating technologies** still slow

Motivation

What?

- heat pumps in residential buildings
- primary renewable-based technology
- **topical** in both Ireland and Germany [1, 2]
- still contribute to carbon emissions

thermal flexibility

- mass of buildings as thermal storage
- shift energy demand
- to reduce emissions

own review paper: **emission reductions** when using energy demand **flexibility**

- emission reduction potentials can be **significant** (Ø 17.8%)
- often no focus
 on employing energy demand flexibility
 for environmental reasons

Where?

Ireland and Germany

- weather (maritime vs. continental)
- building structure (insulation, cellars, ...)
- energy system (isolation of grid vs. connected grid)

Related Literature

Ref.	Building scales	Germany/ Ireland	Modelling of the thermal mass	Target year	Energy system model method	Emission reduction potential ¹
Leerbeck et al. (2020)	family house & office building	— (Denmark)	RC-model & state-space model	2017– 2018	control (MPC) with emission- optimisation	\checkmark
Huckebrink & Bertsch (2022)	urban neighbourhood with 130 houses (aggregated)	√(Germany)	RC-model	2020	cost-optimisation	_
Rasku & Kiviluoma (2019)	Finnish housing stock (aggregated)	— (Finland)	RC-model	2030	cost-optimisation	_
Sperber et al. (2020)	German building stock (single & aggregated)	√(Germany)	TRNSYS & RC-model	2040	simulation	_
this study	Irish & German building stock (single & aggregated)	√ (Ireland & Germany)	RC-model	2019	emission- optimisation	✓

 $^{\rm 1}$ by using the thermal mass as a thermal storage

Leerbeck K. et al. (2020). <u>https://doi.org/10.3390/en13112851</u>.

RUHR UNIVERSITÄT BOCHUM

5/18 Huckebrink D. & Bertsch V. (2022). <u>https://doi.org/10.1016/j.energy.2022.124605</u>. Rasku T. & Kiviluoma J. (2019). <u>https://doi.org/10.3390/en12010005</u>.

Research Questions

- How...
 - many emissions can be reduced
 - by decoupling energy demand and supply when operating heat pumps
 - by using passive thermal storage (mass of buildings)?
- Additionally, what is the impact of **geographical variation** on the potential for emission reductions?

Setup of Building Models

 based on *Backbone* with **building model method by** [1, 2]

- scheduling and investment planning
 - cost and emission minimisation
 → emission reduction potentials

[1] Rasku T. & Kiviluoma J. (2019). <u>https://doi.org/10.3390/en12010005</u>.
 [2] Huckebrink D. & Bertsch V. (2022). <u>https://doi.org/10.1016/j.energy.2022.124605</u>.

Image sources: heat pump by Lomaxy, thermometer by Adrien Coquet, PV module, sun and transmission tower by Alex Quinto

Setup of Building Models

 based on *Backbone* with **building model method by** [1, 2]

- reduced order model (2R3C)
- building parameters (U-values, areas, heat capacities)

[1] Rasku T. & Kiviluoma J. (2019). <u>https://doi.org/10.3390/en12010005</u>.
 [2] Huckebrink D. & Bertsch V. (2022). <u>https://doi.org/10.1016/j.energy.2022.124605</u>.
 Image sources: heat pump by <u>Lomaxy</u>, thermometer by <u>Adrien Coquet</u>, PV module, sun and transmission tower by <u>Alex Quinto</u>

Setup of Building Models

based on *Backbone* with **building model method by** [1, 2]

- endogenous heating demand
- thermal flexibility
 by indoor temperature band
 → building masses as a
 thermal storage

RUHR

BOCHUM

UNIVERSITÄT

RUB

[1] Rasku T. & Kiviluoma J. (2019). <u>https://doi.org/10.3390/en12010005</u>.

9/18 [2] Huckebrink D. & Bertsch V. (2022). https://doi.org/10.1016/j.energy.2022.124605.

Image sources: heat pump by Lomaxy, thermometer by Adrien Coquet, PV module, sun and transmission tower by Alex Quinto

Archetype Buildings

- residential archetype buildings
- building parameters for Ireland [1]:
 - EnergyPlus small-scale models
 - for typical Irish building archetypes
 - detached houses,
 40% of the Irish building stock

Figure: Detached house used in Irish model [1]

- building parameters for Germany [2]:
 - TRNSYS/reduced-order small-scale models
 - for typical single-family houses in Germany
 - single-family houses,
 66% of the German building stock

Figure: Single-family house used in German model [1] (based on TABULA [3])

[1] Ali U. et al. (2019). <u>https://doi.org/10.1016/j.enbuild.2019.109364</u>.
 [2] Sperber E., Frey U. & Bertsch V. (2020). <u>https://doi.org/10.1016/j.enbuild.2020.110144</u>.
 [3] TABULA (2014). <u>https://doi.org/10.1016/j.enpol.2014.01.027</u>.

Image sources: heat pump by Lomaxy, thermometer by Adrien Coquet, PV module, sun and transmission tower by Alex Quinto, CO2 by Circlon Tech

Scenarios

emission reduction potentials

Results – Thermal Flexibility

flexibility of thermal mass **slightly used**

Results – Thermal Flexibility

flexibility of thermal mass thoroughly used

Results – Emission Reductions

reference case no flexibility used

emission reduction potentials

56% 44% emission reduction potentials

Limitations

 RC-model used—possibly not as accurate as computational-intensive white-box-models but considerably faster

Outlook

- inclusion of all archetype building types for Ireland and Germany
- **upscaling** of buildings for each country and comparison
- spatial diversion of weather data for each country

thank you

Christine Nowak, M.Sc. Ruhr-University Bochum Chair of Energy Systems and Energy Economics Universitätsstr. 150 44801 Bochum, Germany

E-mail: christine.j.nowak@rub.de Homepage: <u>www.ee.rub.de</u>

Setup of Building Models

Figure: Own model structure of the building model in Backbone

min cost vs. min emissions (w/o PV): flexibility is slightly used

OR 2024 | Christine Nowak

min emissions — w/o PV vs. with PV: flexibility is thoroughly used

OR 2024 | Christine Nowak

- goal: assessing the emission-reduction potential of the thermal flexibility measures
- min cost w/o PV vs. min emissions with PV:

min emissions — w/o PV vs. with PV: flexibility is thoroughly used

