

RUHR-UNIVERSITÄT BOCHUM

ASSESSMENT OF CLIMATE UNCERTAINTY IN AN INTEGRATED EUROPEAN POWER AND HEATING SYSTEM

GOR 2024, Leonie Sara Plaga, David Huckebrink, Valentin Bertsch

Overview

- Motivation
- Integrated power and heat system
- 3 Climate uncertainty assessment
- 4 Results
- 5 Conclusion and outlook

Overview

- **1** Motivation
- Integrated power and heat system
- 3 Climate uncertainty assessment
- 4 Results
- 5 Conclusion and outlook

Motivation

- Climate change impacts already visible
- Energy systems depend on climate variables

European average temperature anomaly

Source: https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-10/assessment

Motivation

- Climate change impacts already visible
- Energy systems depend on climate variables
- Climate projections are highly uncertain
 - different models
 - different years
 - different RCPs

Source: https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-10/assessment

Motivation

- How can we plan an energy system, that is robust to different climate developments?
- How can we model influence of changing temperatures on heating and cooling demand?

→ Robust optimization of integrated power and heat system

Overview

- Motivation
- Integrated power and heat system
- 3 Climate uncertainty assessment
- 4 Results
- 5 Conclusion and outlook

Overview

- Least-cost energy system optimization
- Target year 2050
- Zero CO₂ emissions

Power

- Green field modelling except for hydro power
- Investment possibilities
- Analysis in energy system model backbone¹
- Most power system data from pypsa-eur²

Poland Germany

¹ Helistö et. al, 2019, doi.org/10.3390/en12173388

² Hörsch et. al, 2018, doi.org/10.1016/j.esr.2018.08.012

Heat

- Investments possibilities
- Retrofits possible

Climate data

Heat

- Simplified representation of buildings
- Aggregated per country
- U-values via regression with Hotmaps data¹
- 20° C temperature indoor

¹ Pezzutto et al. Hotmaps, D2.3 WP2 Report – Open Data Set for the EU28, 2019

Overview

- Motivation
- 2 Integrated power and heat system
- **3** Climate uncertainty assessment
- 4 Results
- 5 Conclusion and outlook

Climate data and uncertainty

- Climate projections from Euro-Cordex
- Processed with tool *cd*2*es* (https://gitlab.ruhr-uni-bochum.de/ee/cd2*es*)
- Bias-adopted temperature data
 - Two climate models
 - 5 years (2045 2050)
 - Two RCPs (2.6, 8.5)
- Only for temperature

UNIVERSITÄT

Compared methods

- Base case: choose average year for planning of investments
- Two-stage robust optimization (column and constraint generation algorithm)
- Time series aggregation method obpc

Two-stage robust optimization

- Uncertainty set U
- First stage decision (e.g. investment)
- Optimization problem:

Second stage decision (e.g. dispatch)

s. t.
$$Ay \le d$$
, $y \in S_y$
$$F(y,u) = \{x \in S_x : Gx \ge h - Ey - Mu\}$$

Uncertainty set U = {all scenarios}

Two-stage robust optimization – column and constraint generation algorithm

$$\min_{\mathbf{y}} \mathbf{c}^T \mathbf{y} + \max_{u \in U} \min_{\mathbf{x} \in F(\mathbf{y}, u)} \mathbf{b}^T \mathbf{x}$$

Solve master problem for one scenario:

$$\Rightarrow \min_{\mathbf{y}, \mathbf{x}} \mathbf{c}^T \mathbf{y} + \mathbf{b}^T \mathbf{x}$$

Solve sub problems for all scenarios with solution y:

$$\Rightarrow \max_{u \in U} \min_{x \in F(y,u)} \boldsymbol{b}^T \boldsymbol{x}$$

(Zheng, Zhao, 2013)

Two-stage robust optimization – column and constraint generation algorithm

Solve master problem for one scenario:

$$\Rightarrow \min_{y,x} \mathbf{c}^T \mathbf{y} + \mathbf{b}^T \mathbf{x}$$

2. Solve sub problems for all scenarios with solution y:

$$\Rightarrow \max_{u \in U} \min_{x \in F(\mathbf{y}, u)} \mathbf{b}^T \mathbf{x}$$

- 3. Add constraints to master problem: investment may never be smaller than in solution *y*
- 4. Return to 1., use worst scenario in master problem

Exit loop, if all sub problem solutions are below threshhold

(Zheng, Zhao, 2013)

Robustness via time series aggregation

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

System optimization

18

Robustness via time series aggregation – obpc

- Optimization based: Clusters in result space
 - Run every day individually
 - Use results for clustering
- Possibility to assign priority to days in the clustering process

Traditional Demand timeseries

Capacity factors

Hydro inflows

Based on optimization results

Investment decisions Generated energy Costs

(Sun et al., 2019)

19

Lost load as priority indicator

- Robust system: avoid lost load
- Lost load: no result from single day investment optimization
- Perform a schedule run with the single day results on a 30-day sample

Lost load as priority indicator

- Robust system: avoid lost load
- Lost load: no result from single day investment optimization
- Perform a schedule run with the single day results on a 30-day sample

→ Only solve 1 365-day optimization model

Overview

- Motivation
- 2 Integrated power and heat system
- 3 Climate uncertainty assessment
- 4 Results
- 5 Conclusion and outlook

Changes in heating and cooling demand

Costs and lost load

Investment – heat technologies

Investment – generation technologies

Investment – retrofit

Overview

- Motivation
- Integrated power and heat system
- 3 Climate uncertainty assessment
- 4 Results
- **5** Conclusion and outlook

28

Conclusion and Outlook

Conclusion

- Climate change impact on integrated heat and power system
- Intervear variability greater than difference between RCPs/models
- C&CG and *obpc* reduce lost load
- obpc faster, but higher lost load abatement costs
- Very different solutions in investment space

RUHR UNIVERSITÄT

Conclusion and Outlook

Outlook

- Improve performance of obpc
- Look into more climate imapets
 - Hydro power
 - Wind power
 - Solar power
 - Efficiency of thermal power plants
- Flexible temperatures in buildings
- Constrain biomass usage

Thank you for your attention!

CONTACT

Leonie Plaga Ruhr-Universität Bochum Chair of Energy Systems & Energy Economics Universitätsstr. 150

44801 Bochum, Germany Phone: +49 234 32 **26849**

plaga@ee.rub.de | www.ee.rub.de

- Demand
- Hydro power
- Wind power
- Solar power
- Efficiency of thermal power plants

- Demand
 - Temperature influences heating and cooling demand
 - Country-specific regression

- Hydro power
 - River-runoff determines production
 - Site-specific evaluation very costly
 - Europe-wide regression
 - Estimating country-specific hydro production based on European trend

- Hydro power
 - River-runoff determines production
 - Site-specific evaluation very costly
 - Europe-wide regression
 - Estimating country-specific hydro production based on European trend

- Wind power
 - Interpolate wind speed to hub height
 - Use standardized production functions
- Solar power
 - Output depends on solar irradiation
 - Rising temperature decreases cell efficiency
 - Temperature of cell rises with outside temperature and irradiation

- Efficiency of thermal power plants
 - Cooling system is depending on temperature
 - Once-through cooling more vulnerable than closed-loop cooling
 - In this study: only closed-loop

Influence of climate variables on energy systems

- Wind power
 - Climate models report wind speeds
 - Interpolate to hub height:

$$v(h) = v(h_0) \cdot \left(\frac{h}{h_0}\right)^{1/7}$$

Calculate capacity factor:

$$c_{\rm f} = \begin{cases} 0, & v < v_{\rm in} \\ \frac{v^3 - v_{\rm in}^3}{v_{\rm r}^3 - v_{\rm in}^3}, & v_{\rm in} \le v < v_{\rm r} \\ 1, & v_{\rm r} \le v < v_{\rm out} \\ 0, & v > v_{\rm out} \end{cases}$$

Influence of climate variables on energy systems

- Solar power
 - Rising temperature decreases cell efficiency:

$$\eta = \eta_{\rm STC} (1 - \beta (T_{\rm cell} - T_{\rm STC}))$$

Temperature of cell rises with outside temperature and irradiation:

$$T_{\text{cell}} = T_{\text{am}} + c \cdot G$$

- Efficiency of thermal power plants
 - Cooling system is depending on temperature
 - Once-through cooling more vulnerable than closed-loop cooling
 - In this study, only closed-loop:

$$\eta = \begin{cases} \eta_0, & T \le T_{\text{health}} \\ \eta_0 (1 - \rho (T - T_{\text{health}})), & T > T_{\text{health}} \end{cases}$$

State-of-the-art robust optimization

Column and constraint generation algorithm

- Uncertainty set U
- Optimization problem:

$$\min_{y} \mathbf{c}^{T} \mathbf{y} + \max_{u \in U} \min_{x \in F(y,u)} \mathbf{b}^{T} \mathbf{x}$$

s. t. $\mathbf{A}\mathbf{y} \leq \mathbf{d}, \mathbf{y} \in \mathbf{S}_{\mathbf{y}}$

(Zeng., 2013)

State-of-the-art robust optimization

Column and constraint generation algorithm

- Set $LB = -\infty$, $UB = +\infty$, k = 0 and $O = \emptyset$
- Solve the following master problem.

MP2:
$$\min_{y,\eta} c^T y + \eta$$

s. t. $\mathbf{A}\mathbf{y} \leq d$, $\mathbf{y} \in \mathbf{S}_{\mathbf{y}}$
 $\eta \geq b^T x_l$, $\forall l \in O$
 Ey

- MP2
- : min y,η
- s.t. Ay ≥ d
- n ≥ bTxl

(Zeng., 2013)

Timeseries aggregation methods

Overview

- Reduce timeseries with length n to shorter timeseries with length n'
- Aggregation of redundant information
- Many different methods
- No method to improve robustness

(Hoffman et al., 2020)

Adjacent clustering

Basic method

- Combine vectors with lowest Euclidean distance
- Only neighbouring vectors can form clusters → conserves temporal order

(Hoffman et al., 2020)

Clustering based on optimization results

Original Method

- Divide timeseries in smaller timeslices (e.g. days)
- Optimize the smaller timesclies individually
- Cluster based on optimization results

Traditional

Demand timeseries Capacity factors Hydro inflows

Based on optimization results

Investment decisions
Generated energy
Costs

(Sun et al., 2019)

Priority clustering

Original Method

- Three groups:
 - 1. Very important timesteps
 - 2. Important timesteps
 - 3. Normal timesteps

Priority clustering

Original Method

- Cluster with the following adjustments:
 - Very important clusters cannot be merged
 - Merging clusters with the same importance: centroid = average of clusters
 - Merging clusters with the different importance: centroid = centroid of more important cluster

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0.7 \\ 0.5 \end{pmatrix} \begin{pmatrix} 1 \\ 1.1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0.3 \\ 0.4 \end{pmatrix}$$
 which we have the improvement and the contract of the contrac

Priority clustering

Lost load as priority indicator

- Robust system: avoid lost load
- Lost load: no result from single day investment optimization
- Perform a schedule run with the single day results on a 30-day sample

Combination

Priority clustering based on opimization results

- Divide timeseries in day-long timeslices
- Optimize timesclices individually

Combination

Priority clustering based on opimization results

- Divide timeseries in day-long timeslices
- Optimize timesclices individually
- Run scheduling optimization with single day results

30 day sample from complete time series

Lost load

Combination

Priority clustering based on opimization results

- Divide timeseries in day-long timeslices
- Optimize timesclices individually
- Run scheduling optimization with single day results
- Use lost load to divide timesclices into 3 priority groups
- Cluster timesclices based on investment decisions and priority groups

