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Why is it relevant?
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Figure (left) taken from Kotzur et al. A modeler's guide to handle complexity in energy systems optimization, Advances in Applied Energy 2021. https://doi.org/10.1016/j.adapen.2021.100063

2 Figure (right) taken from Betsch and Fichtner, A participatory multi-criteria approach for power generation and transmission planning, Ann Oper Res 2016. https://doi.org/10.1007/s10479-015-1791-y
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How is it done?
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Material and energy supply risk metrics



Material supply risk metric
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This case study is based on Colucci, G., Finke, J., Di Cosmo, V., Bertsch, V., Savoldi, L. Combined assessment of material and energy supply risks in the energy transition: a multi-objective
energy system optimization approach (Under review)



Energy supply risk metric

Decision variables for net energy import
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6 This case study is based on Colucci, G., Finke, J., Di Cosmo, V., Bertsch, V., Savoldi, L. Combined assessment of material and energy supply risks in the energy transition: a multi-objective
energy system optimization approach (Under review)



Multi-objective optimisation method



Multi-objective optimisation with AUGMECON
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8 AUGMECON is developed by Mavrotas, Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems, Applied Mathematics and
Computation 2009. ://doi j
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Energy system model



TEMOA ltaly power sector model
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Openly available at
https://github.com/MAHTEP/TEMOA/tree/moo
https://github.com/MAHTEP/TEMOA-Italy/tree/materials

10 TEMOA ltaly is developed by Nicoli et al. (2022) Can We Rely on Open-Source Energy System Optimization Models? The TEMOA-Italy Case Study. Energies 15(18). https://doi.org/10.3390/en15186505
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Supply risks for individual power sector technologies and
energy carriers in ltaly
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11 This case study is based on Colucci, G., Finke, J., Di Cosmo, V., Bertsch, V., Savoldi, L. Combined assessment of material and energy supply risks in the energy transition: a multi-objective
energy system optimization approach (Under review)



Results



Cost-efficient decarbonisation leads to uncontrolled rise
of material supply risk
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13 This case study is based on Colucci, G., Finke, J., Di Cosmo, V., Bertsch, V., Savoldi, L. Combined assessment of material and energy supply risks in the energy transition: a multi-objective
energy system optimization approach (Under review)



Multi-objective optimisation of energy and material
supply risk under cost and emission constraints
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Discussion
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Limitations

Power sector only, but extension would be big effort in terms of data

Static material and energy supply, but demand may affect supply for larger systems

Supply risks only at material and energy level, but import of manufactured appliances /
technologies may also induce supply risks

No constraints on CCS availability, which may be limited technically or politically

Usual model limitations (temporal, geographical and technical details)



Conclusions

= Developed a first-of-a-kind energy system optimisation framework based on TEMOA
» Endogenous material and energy supply risk metrics
=  Multi-objective optimisation with AUGMECON
=  Open-source: https://github.com/MAHTEP/

= Italian power sector case study
» Decarbonisation and energy supply risk reduction coincide (both driven by natural gas)
= Material supply risk rises sharply with cost-efficient decarbonisation due to wind and LIBs
= Under decarbonisation, reducing material supply risk shifts wind to PV to gas w/CCS
= Diminishing marginal utility of extra cost (supply risk reductions until 15%)

= May need supply risk reductions by new / diversified supply chains, domestic production or
new energy technologies
17
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Thank you!

Jonas Finke
Chair of Energy Systems and Energy Economics | Ruhr-Universitat Bochum
jonas.finke@rub.de
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Table 1. Data and sources of the parameters needed to define the material SR metric. Concerning SR,,,, two values for each matenal are reported. The one adopted in the
manuscript is reported in the column “Equation (1)7. It was derived from the EU CRMs list [10], the value of whhch is reported in the column “EUT, by omitting the recycling
and substitution factors. Indeed, they were neglected for consistency reasons with the energy SE.metric.

SR, (— t
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Cobait 2.8 3.7 1.1-102 20 201.5 71.1 78.6 720.0
Copper 0.1 0.3 21 4150.1 1292.4 1938.6 3605.0 1050.0 2270.0 764.8 143 1150.0 3554 10474  2616.0
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Platinum 21 25 7.2-10% 4.0-102
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Table 2. Sub-technological shares adopted to derive a generic SR;* for solar PV and onshore and offshore wind

(the latter shares are in parenthesis).

Technology Sub-technology 2050 share [6]

c-Si 95%

Solar PV CdTe 4%
CIGS 1%
GB-PMSG 10% (15%)

Wind-onshore GB-DFIG 70% (15%)

(offshore) DD-EESG 6% (0%)
DD-PMSG 14% (85%)




Table 3. Data and sources of the parameters needed to define the energy SR metric. Although only the top three
supplier countries are shown, all supplier countries are used to derive the HHI,. Moreover, note that a high value
for g, refers to a low stability while a low g, value refers to a high stability.

: Top three
Ener Geographical . -
commogi);ies gcoll:e suppll_er Sce gf’fcéi]) HHI, (-)
countries
Ttal Algeria 37.0% 6.72
Natural gas 8 5? Russia 20.2% 6.29 1.39
Azerbaijan 14.6% 6.39
Ttaly Russia . 32.8% 6.29
Coal [86] South Africa 18.2% 4.69 0.98
United States 13.0% 2.68
EU Kazakhstan 27.0% 5.72
Nuclear 87] Niger 25.4% 6.50 1.11
Canada 22.0% 1.79
EU Australia 59.7% 1.92
Hydrogen (89] Brazil 15.0% 5.40 0.94
Chile 15.0% 3.08
Global United States 38.1% 2.68
Biofuels [91] Brazil 21.8% 5.40 0.73

Indonesia 10.5% 5.32




Multi-objective optimisation with AUGMECON
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AUGMECON is developed by Mavrotas, Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems, Applied Mathematics and
23 Computation 2009. ://doi j
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* fcost = total system cost

* fcoz = total cumulative
net CO2 emissions

(Section 4.1)
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