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Why is it relevant?
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Figure (left) taken from Kotzur et al. A modeler’s guide to handle complexity in energy systems optimization, Advances in Applied Energy 2021. https://doi.org/10.1016/j.adapen.2021.100063
Figure (right) taken from Betsch and Fichtner, A participatory multi-criteria approach for power generation and transmission planning, Ann Oper Res 2016. https://doi.org/10.1007/s10479-015-1791-y

https://doi.org/10.1016/j.adapen.2021.100063
https://doi.org/10.1007/s10479-015-1791-y


How is it done?
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Material and energy supply risk metrics



Material supply risk metric

5 
This case study is based on Colucci, G., Finke, J., Di Cosmo, V., Bertsch, V., Savoldi, L. Combined assessment of material and energy supply risks in the energy transition: a multi-objective 
energy system optimization approach (Under review)
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Energy supply risk metric
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This case study is based on Colucci, G., Finke, J., Di Cosmo, V., Bertsch, V., Savoldi, L. Combined assessment of material and energy supply risks in the energy transition: a multi-objective 
energy system optimization approach (Under review)
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Multi-objective optimisation method



Multi-objective optimisation with AUGMECON
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AUGMECON is developed by Mavrotas, Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems, Applied Mathematics and 
Computation 2009. https://doi.org/10.1016/j.amc.2009.03.037
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Energy system model



TEMOA Italy power sector model
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Openly available at
https://github.com/MAHTEP/TEMOA/tree/moo

https://github.com/MAHTEP/TEMOA-Italy/tree/materials

TEMOA Italy is developed by Nicoli et al. (2022) Can We Rely on Open-Source Energy System Optimization Models? The TEMOA-Italy Case Study. Energies 15(18). https://doi.org/10.3390/en15186505

https://github.com/MAHTEP/TEMOA/tree/moo
https://github.com/MAHTEP/TEMOA-Italy/tree/materials
https://doi.org/10.3390/en15186505


Supply risks for individual power sector technologies and 
energy carriers in Italy
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This case study is based on Colucci, G., Finke, J., Di Cosmo, V., Bertsch, V., Savoldi, L. Combined assessment of material and energy supply risks in the energy transition: a multi-objective 
energy system optimization approach (Under review)
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Results



Cost-efficient decarbonisation leads to uncontrolled rise 
of material supply risk
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This case study is based on Colucci, G., Finke, J., Di Cosmo, V., Bertsch, V., Savoldi, L. Combined assessment of material and energy supply risks in the energy transition: a multi-objective 
energy system optimization approach (Under review)
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supply risk under cost and emission constraints

14 
This case study is based on Colucci, G., Finke, J., Di Cosmo, V., Bertsch, V., Savoldi, L. Combined assessment of material and energy supply risks in the energy transition: a multi-objective 
energy system optimization approach (Under review)



Discussion



Limitations
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 Power sector only, but extension would be big effort in terms of data

 Static material and energy supply, but demand may affect supply for larger systems

 Supply risks only at material and energy level, but import of manufactured appliances / 
technologies may also induce supply risks

 No constraints on CCS availability, which may be limited technically or politically

 Usual model limitations (temporal, geographical and technical details)



Conclusions
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 Developed a first-of-a-kind energy system optimisation framework based on TEMOA

 Endogenous material and energy supply risk metrics

 Multi-objective optimisation with AUGMECON

 Open-source: https://github.com/MAHTEP/

 Italian power sector case study

 Decarbonisation and energy supply risk reduction coincide (both driven by natural gas)

 Material supply risk rises sharply with cost-efficient decarbonisation due to wind and LIBs

 Under decarbonisation, reducing material supply risk shifts wind to PV to gas w/CCS

 Diminishing marginal utility of extra cost (supply risk reductions until 15%)

 May need supply risk reductions by new / diversified supply chains, domestic production or 
new energy technologies

https://github.com/MAHTEP/


Thank you!

Jonas Finke
Chair of Energy Systems and Energy Economics | Ruhr-Universität Bochum
jonas.finke@rub.de
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Multi-objective optimisation with AUGMECON

23 
AUGMECON is developed by Mavrotas, Effective implementation of the epsilon-constraint method in Multi-Objective Mathematical Programming problems, Applied Mathematics and 
Computation 2009. https://doi.org/10.1016/j.amc.2009.03.037
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Ex-post
assessment of

energy and
material SRs

• 𝒇𝑪𝑶𝟐
𝑴𝑰𝑵 = minimum of 𝑓𝐶𝑂2

• 𝒇𝒄𝒐𝒔𝒕
𝑴𝑰𝑵 = least-cost

corresponding to 𝑓𝐶𝑂2
𝑀𝐼𝑁

• 𝒇𝒄𝒐𝒔𝒕 = total system cost
• 𝒇𝑪𝑶𝟐 = total cumulative

net CO2 emissions

1-𝒎𝒊𝒏(𝒇𝒄𝒐𝒔𝒕, 𝒇𝑪𝑶𝟐)

• 𝑺𝑹𝑬 = energy SR
• 𝑺𝑹𝑴 = material SR

2-𝒎𝒊𝒏(𝑺𝑹𝑬, 𝑺𝑹𝑴)

𝒎𝒊𝒏(𝑺𝑹𝑬, 𝑺𝑹𝑴) s.t.:

• 𝒇𝑪𝑶𝟐 = 𝒇𝑪𝑶𝟐
𝑴𝑰𝑵

• 𝒇𝒄𝒐𝒔𝒕 = 𝐬𝐜𝐨𝐬𝐭 ⋅ 𝒇𝒄𝒐𝒔𝒕
𝑴𝑰𝑵

(Section 4.1) (Section 4.2)
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