

RUHR-UNIVERSITÄT BOCHUM

MULTI-OBJECTIVE ENERGY SYSTEM MODELLING TO DEFOSSILISE THE EXISTING COMMERCIAL BUILDING STOCK OF A MUNICIPALITY

EURO 2022 (3.–6. July 2022) – Christine Nowak

A Collaboration with Jonas Finke and Valentin Bertsch

Agenda

Motivation

heating transition in the existing **commercial building stock**

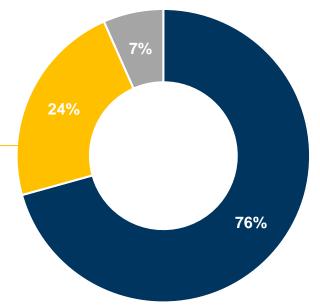
Methods

feasibility study and energy system model

Results & Discussion

multi-objective optimisation findings, trends and objective conflicts

Summary & Outlook



Motivation

- heating transition is inevitable, and a lot still needs to be accomplished
- existing building stock is especially challenging
- a lot of research for the residential sector
 not so much for the commercial sector

Chair of

F

Energy Systems &

Energy Economics

space heating consumption, 649 billion kWh (final energy), for Germany in 2020¹

- residential sector
- commercial sector

RUR

industrial sector

RUHR

BOCHUM

UNIVERSITÄT

4 EURO 2022 | Christine Nowak, Jonas Finke & Valentin Bertsch

¹ Bundesverband der Energie- und Wasserwirtschaft e.V. (2022): Entwicklung des Wärmeverbrauchs in Deutschland. Basisdaten und Einflussfaktoren. 6. Ausgabe.

Motivation

- energy system modelling suited to find optimal heating supply
- multi-objective optimisation
 to understand trade-offs

Research Question

How can the heating supply

for existing municipal commercial buildings

be optimally designed

in terms of costs, greenhouse gas emissions and self-sufficiency?

Chair of

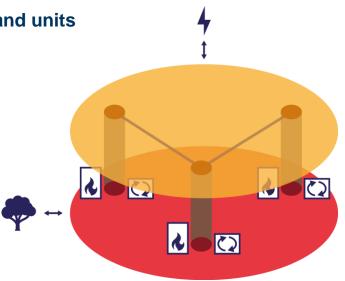
Energy Systems &

heray Economics

RUHR

BOCHUM

UNIVERSITÄT


Energy System Optimisation Framework Backbone

Network Model:

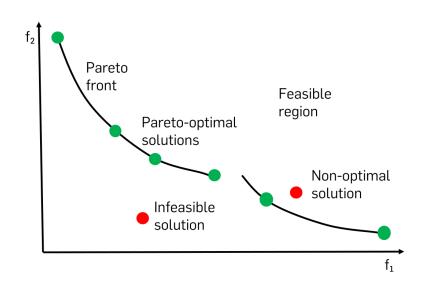
- highly adaptable structure with grids, nodes, lines and units
- various energy carriers and sectors
- flexible spatial and temporal resolution

Optimisation:

- · investment and operational planning
- cost minimisation

RUHR

BOCHUM


UNIVERSITÄT

Multi-objective Optimisation

- new features in Backbone:
 emission minimisation as well as self-sufficiency maximisation
- optimisation of multiple objectives
- Pareto-front: set of Pareto-optimal solutions

Augmented Epsilon-Constraint Optimisation Method (AUGMECON):

- reformulate all but one objective to constraints
- implemented AUGMECON in Backbone for three objectives

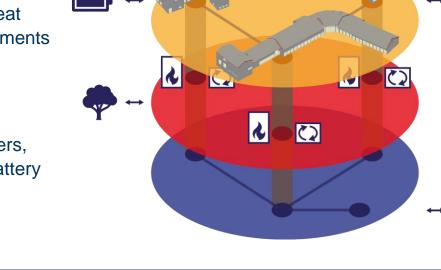
Finke, J. & Bertsch, V. (2022): Implementing a highly adaptable method for the multi-objective optimisation of energy systems. In preparation

Case Study

Three Existing Commercial Buildings in a Small Municipality:

municipality hall, primary school and kindergarten

Feasibility Study:


- "A low-temperature heating network with heat pumps/geoth. probes is feasible if refurbishments are conducted."
 - → provides real world data

Energy Supply and Storage Options:

 geothermal probes, heat pumps, pellet boilers, public electricity grid, photovoltaics (PV), battery storages

Scenario:

• year 2030, some refurbishments

Chair of

Enerav Systems &

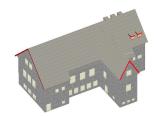
nerav Economics

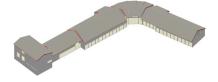
RUHR

BOCHUM

UNIVERSITÄT

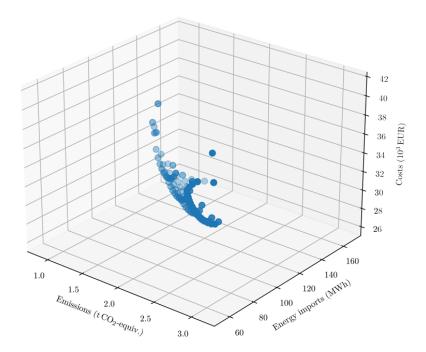
Case Study


Data:


- · costs, technical data and electricity demand from feasibility study
- heating demand and capacity factor time series for PV based on locational weather data for the year 2021
- variable emission factors for the public electricity grid, scaled for 2030
- **variable electricity prices** (consumer prices including scaled variable wholesale prices + inflation) for 2030
- · electricity selling prices for PV included

Implementation in Backbone:

- 1 year, hourly resolution
- Inear programming, investment planning
- three objectives: costs, emissions and self-sufficiency (i.e. energy imports)



Results & Discussion

Objectives Influences:

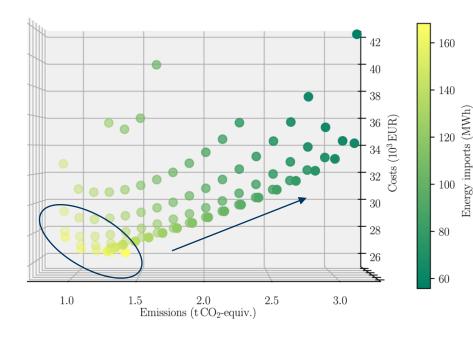
• min costs

from investments, operation costs and fixed operation and maintenance costs

 min emissions & max self-sufficiency from pellets and public grid electricity

Chair of

Energy Systems &


Energy Economics

RUHR

BOCHUM

UNIVERSITÄT

RUR

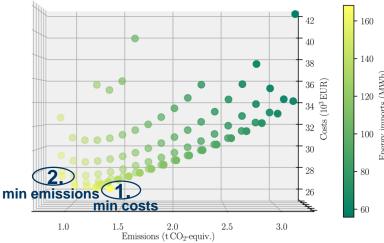
Trends:

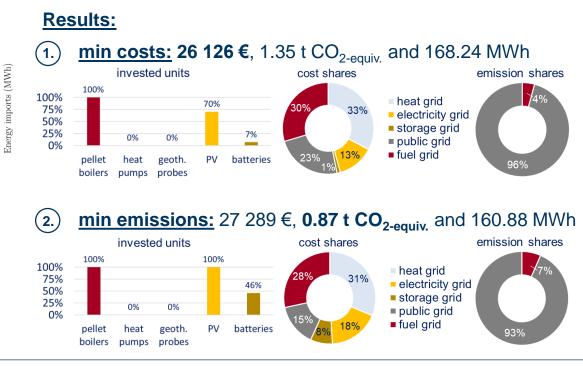
- when allowing low self-sufficiency:
 - clear correlation between costs and emissions, both are low
 - but there is still a conflict, due to investments in battery storages and PV

RUHR

BOCHUM

UNIVERSITÄT


RUR


 the higher self-sufficiency, the higher costs and emissions

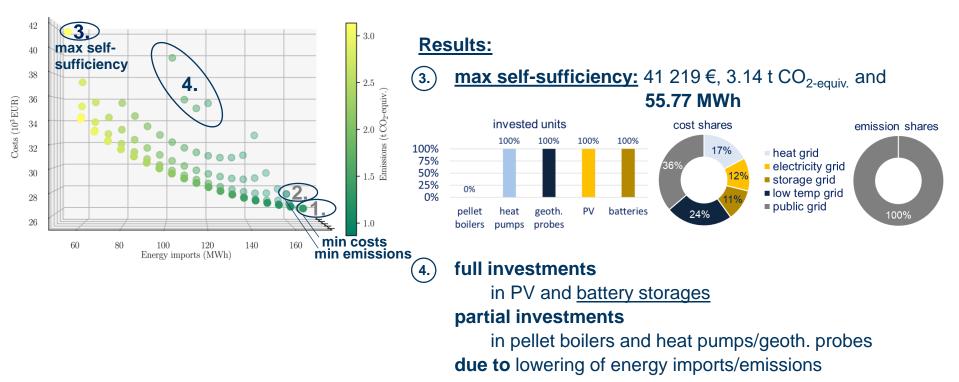
Chair of

Energy Systems &

Energy Economics

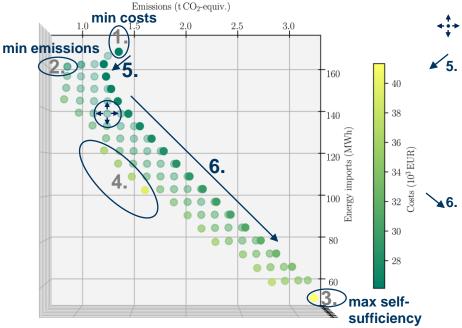
Chair of

EE


Energy Systems &

Energy Economics

RUHR


BOCHUM

UNIVERSITÄT

Chair of Energy Systems & Energy Economics

RUHR UNIVERSITÄT BOCHUM

- regularity due to constraints formulation
 - stricter constraint on self-sufficiency:
 first decrease in emissions
 due to investments in <u>PV</u> and partially in battery storages
 pellet boilers investments almost constant
 no heat pumps/geoth. probes

even stricter constraint on self-sufficiency: increase in emissions due to add. investments in heat pumps/geoth. probes pellet boilers investments decrease

Chair of

Energy Systems &

nerav Economics

RUHR

BOCHUM

UNIVERSITÄT

RUR

Summary & Outlook

Summary & Outlook

Summary:

- energy system model of three commercial municipal buildings, optimised for costs, emissions and self-sufficiency
- overall: the higher the self-sufficiency, the higher costs and emissions
- when self-sufficiency is heightened, first there is a decrease and after that an increase in emissions
- Pareto front shows conflicts and equips stakeholders for investment decisions

Outlook:

 extension of model: mixed-integer linear programming, scenarios with data for multiple years and with different refurbishment levels

> RUHR UNIVERSITÄT

BOCHUM

preparatory step to load shifting investigations

thank you

Christine Nowak, M.Sc. Ruhr-University Bochum Chair of Energy Systems and Energy Economics Universitätsstr. 150 44801 Bochum, Germany

Phone: +49 234 32 26378 E-Mail: christine.j.nowak@rub.de Homepage: <u>www.ee.rub.de</u>

🔰 @energy_rub

Backup - Node to Node

p_gnn

					[MW]	[-]	[-]	[MW]	[€/MW]	[-]	[MW]	[-]		
	Α	В	С	D	E	F	G	н	I.	J	К	L		
1	GRID	FROM_NODE	TO_NODE		Define parameters for transfer and diffusion between nodes									
2				PARAM_GN	transferCap	transferLoss	investMIP	transferCapInvLimit	invCost	annuity	unitSize	availability		
3	low_temp	sch_low_temp	low_temp_distributor		eps	0.05		0.06	97950	0.083679	0.06	1		
4	low_temp	low_temp_distributor	sch_low_temp		eps	0.05		0.06	97950	0.083679	0.06	1		
5	low_temp	gem_low_temp	low_temp_distributor		eps	0.05		0.03	203492	0.083679	0.03	1		
6	low_temp	low_temp_distributor	gem_low_temp		eps	0.05		0.03	203492	0.083679	0.03	1		
7	low_temp	kita_low_temp	low_temp_distributor		eps	0.05		0.04	153447.8	0.083679	0.04	1		
8	low_temp	low_temp_distributor	kita_low_temp		eps	0.05		0.04	153447.8	0.083679	0.04	1		
9	low_temp	geo_field	low_temp_distributor		eps	0.05		0.13	3302	0.083679	0.13	1		
10	low_temp	low_temp_distributor	geo_field		eps	0.05		0.13	3302	0.083679	0.13	1		
11	elec	kita_elec	sch_elec		100	0						1		
12	elec	sch_elec	kita_elec		100	0						1		
13	elec	gem_elec	sch_elec		100	0						1		
14	elec	sch_elec	gem_elec		100	0						1		

Chair of Energy Systems & Energy Economics

RUHR UNIVERSITÄT BOCHUM

Backup – Units

p_unit

Ρ-	_um		[-]	[-]	[-]	[-]	[-]	[-]	[-]	[-]	
	A	В	С	D	E	F	G	Н	1	J	K
1	UNIT				Define	param	eters fo	or units	, regar	dless of	node
2		*	availability	effoo	eff01	obdo	op01	maxUnitCount	investMIP	useTimeseries	
3	heat_pump_gem		1	1	1	0	1	1			
4	heat_pump_kita		1	1	1	0	1	1			
5	heat_pump_sch		1	1	1	0	1	1			
6	pv_gem		1	1	1	0	1	65			
7	pv_kita		1	1	1	0	1	35			
8	battery_charge_gem		1	0.90	0.90	0	1	5			
9	battery_discharge_gem		1	0.90	0.90	0	1	5			
10	battery_charge_kita		1	0.90	0.90	0	1	3			
11	battery_discharge_kita		1	0.90	0.90	0	1	3			
12	pellet_boiler_gem		1	0.93	0.93	0	1	1			
13	pellet_boiler_kita		1	0.93	0.93	0	1	1			
14	pellet_boiler_sch		1	0.93	0.93	0	1	1			
15	elec_sell_gem		1	1	1	0	1				
16	elec_sell_kita		1	1	1	0	1				
17	geo_probes		1	1	1	0	1	30			
18	u_emissions_ts		1			0	1			1	
19	u_emissions_inputRatio_sch		1	0.5	0.5	0	1				
20	u_emissions_inputRatio_gem		1	0.5	0.5	0	1				
21	u_emissions_inputRatio_kita		1	0.5	0.5	0	1				

Backup – In- and Outputs

	Α	В	с	D	Ε	F	G	Н	1	J	K	L	M	N	0	
1	GRID	NODE	UNIT	input_output			Define pai	rameters f	or units in ce	rtains node	s of certain grids					
															-	
							EN 43 A / 1	FN 41 A /1	COM ANALI	.1			CIN NALL.		[MWh/MW] uppertimitCapacityRatio	
						[-]			[€/MWŀ	IJ		[€/MW]	€/IVIVV/a	4 L-1	[MWh/MW] srLimitCapacityRa	
						¥					5				S S	
					R	ä				5	ð				ਦੇ ਹੋ	
					<u></u>	io,	~		sts	Ê	Ē	2	sts	~	≦ ≣	
					PARAM_GNU	conversionCoeff	capacity	unitSize	vomCosts	maĸRampUp	maĸRampDown	invCosts	fomCosts	annuity	E F	
2	-	1			2	5	6	1	5	8	R E	2	5	E I	릅	
з	heat	gem_heat	heat_pump_gem	output		1	eps	0.0273				697500	20925	0.0837		
4	elec	gem_elec	heat_pump_gem	input		1										
5	low_temp	gem_low_temp	heat_pump_gem	input		1										
6	heat	kita_heat	heat_pump_kita	output		1	eps	0.04				565953.75	16978.61	0.0837		
7	elec	kita_elec	heat_pump_kita	input		1										
8	low_temp	kita_low_temp	heat_pump_kita	input		1										
9	heat	sch_heat	heat_pump_sch	output			eps	0.0605				539687.6033	16190.63	0.0837		
10	elec	sch_elec	heat_pump_sch	input		1										
11		sch_low_temp	heat_pump_sch	input		1										
12		gem_elec	pv_gem	output			eps	0.00034				1400000		0.0837		
		kita_elec	pv_kita	output			eps	0.00034				1400000	28000	0.0837		
	elec	gem_elec	battery_charge_gem	input		1		0.005								
	storage	gem_battery	battery_charge_gem	output			eps	0.005				1000000		0.116	6	
16		gem_battery	battery_discharge_gem	input		1		0.005								
	elec	gem_elec	battery_discharge_gem	output			eps	0.005								
18	elec	kita_elec	battery_charge_kita	input		1		0.005				1000000		0.110	6	
	storage	kita_battery	battery_charge_kita	output			eps	0.005				1000000		0.116	0	
20 21	storage elec	kita_battery	battery_discharge_kita	input		1		0.005								
21		kita_elec	battery_discharge_kita	output		1	eps	0.005								
22	heat	pellet	pellet_boiler_gem	input output			eps	0.0295				711864.4068		0.0006		
24	fuel	gem_heat pellet	pellet_boiler_gem pellet_boiler_kita	input		1		0.0255				/11004.4000		0.0550		
25	heat	kita_heat	pellet_boiler_kita	output			eps	0.048				510416.6667		0.0996		
26		pellet	pellet_boiler_sch	input		1		0.040				510410.0007		0.0550		
	heat	sch_heat	pellet_boiler_sch	output			eps	0.0654				428134.5566		0.0996		
28		gem_elec	elec_sell_gem	input		1		0.0001				120101.0000		0.0550		
29		public_grid_sell	elec_sell_gem	output		1		1000	-72.5							
		kita_elec	elec_sell_kita	input		1										
31		public_grid_sell	elec_sell_kita	output		1		1000	-72.5							
32		geo	geo_probes	input		1										
33	low_temp		geo_probes	output		1	eps	0.0052				1153846.154	******	0.0591		
34		public_grid_buy	u_emissions_inputRatio_sch	input		1										
35	public_grid	public_grid_emissions_ts	u_emissions_inputRatio_sch	input		1										
36	elec	sch_elec	u_emissions_inputRatio_sch	output		1	. 1000	1000								
37	public_grid	public_grid_buy	u_emissions_inputRatio_gem	input		1										
38	public_grid	public_grid_emissions_ts	u_emissions_inputRatio_gem	input		1										
39	elec	gem_elec	u_emissions_inputRatio_gem	output		1	. 1000	1000								
40	public_grid	public_grid_buy	u_emissions_inputRatio_kita	input		1										
41		public_grid_emissions_ts	u_emissions_inputRatio_kita	input		1										
	elec	kita_elec	u_emissions_inputRatio_kita	output		1	. 1000	1000								
43		public_grid_emissions_cons		input		1										
44	public_grid	public_grid_emissions_ts	u_emissions_ts	output		1	. 1000	1000								
					_											

RUHR UNIVERSITÄT BOCHUM

Backup – Constraints

p_unitConstraintNode

			[]									
	A	В	С	D	E	F	G					
1	UNIT	CONSTRAINT	NODE	Constants	for unit sp	pecific cons	traints					
2	heat_pump_gem	eq1	gem_low_temp	-1								
3	heat_pump_kita	eq1	kita_low_temp	-1								
4	heat_pump_sch	eq1	sch_low_temp	-1								
5	heat_pump_gem	eq1	gem_elec	2.3								
6	heat_pump_kita	eq1	kita_elec	2.48								
7	heat_pump_sch	eq1	sch_elec	2.48								
8	u_emissions_inputRatio_sch	eq2	public_grid_buy	-1								
9	u_emissions_inputRatio_sch	eq2	public_grid_emissions_ts	1								
10	u_emissions_inputRatio_gem	eq3	public_grid_buy	-1								
11	u_emissions_inputRatio_gem	eq3	public_grid_emissions_ts	1								
12	u_emissions_inputRatio_kita	eq4	public_grid_buy	-1								
13	u_emissions_inputRatio_kita	eq4	public_grid_emissions_ts	1								
14												

[_]

RUHR UNIVERSITÄT BOCHUM

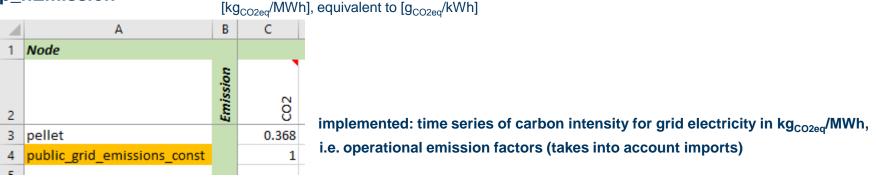
Backup – Prices

ts_PriceChange

			[€/MWh]											
	A	В	С	D	E	F	G	н	I.	J	К	L	М	N
1	Node				Define init	rial fuel pric	e, and subsed	quent chai	nges in fue	l prices as	additions (or reductio	ons (in €/MW	′h)
2		Time index	t000001	t000002	t000003	t000004	t000005	t000006	t000007	t000008	t000009	t000010	t000011	t000012
3	public_grid_buy		196.72	-2.68	-3.51	-1.76	-2.53	-0.19	-0.57	0.46	1.18	3.61	0.12	2.20
4	pellet		50											

Chair of

EE


Energy Systems &

Energy Economics

RUHR UNIVERSITÄT BOCHUM

Backup – Emissions

p_nEmission

Chair of

EE

Energy Systems &

Energy Economics

RUHR

BOCHUM

UNIVERSITÄT

	A	В	С	D	E	
				durschnittlicher CO2- Emissionsfaktor	Skalierungsfaktor für	
1		Anteil EE (%)	Anteil Gas (%)		Zeitreihe von 2021	
2	2021			420	1.000	
3	2030	80	20	79.4	0.189	
4	2040	95	5	19.85	0.047	
-						

Backup – Demands

ts_influx

						[MW]								
	Α	В	C	D	E	F	G	Н	1	J	K	L	М	N
1	GRID	NODE	Forecast index			winter, summer, mixed Exter		ower inflow	/outflow ti	me series (d	ntegrated - i			
2				Time index	AWM	t000001	t000002	t000003	t000004	t000005	t000006	t000007	t000008	t000009
З	heat	sch_heat	f00		-58.14	0	0	0	0	0	-0.020729	-0.02131	-0.026304	-0.02652
4	heat	kita_heat	f00		-54.09	0	0	0	0	-0.020077	-0.020627	-0.021165	-0.021654	-0.021982
5	heat	gem_heat	f00		-31.74	0	0	0	0	0	0	-0.005921	-0.006103	-0.009347
6	elec	sch_elec	f00		-9.15	-0.000226106	-0.000234	-0.00023	-0.000222	-0.000221	-0.000244	-0.000259	-0.000256	-0.000268
7	elec	kita_elec	f00		-12.80	-0.000316332	-0.000327	-0.000322	-0.000311	-0.000309	-0.000342	-0.000363	-0.000357	-0.000375
8	elec	gem_elec	f00		-19.51	-0.001207545	-0.001009	-0.000848	-0.000772	-0.000761	-0.000774	-0.00097	-0.001016	-0.000947
9														

