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Abstract—Anthropological climate change will lead to significant 

changes in climate in the coming years. Many components of an 

energy system depend on climate variables. Yet, projections of 

future climate are subject to large uncertainties. Hence, in this 

work a European electricity system is optimized using different 

climate projections. In addition to single optimizations for the 

different projections, robust optimizations including all 

projections are performed. The comparison of the results shows 

that the different climate projections have significant influence on 

the electricity system, e.g. the total costs differ by 23.7% between 

the cheapest and most expensive projection. When planning a 

robust system including all climate projections, the costs rise by 

2.8% compared to the most expensive single projection, avoiding 

the loss of load for costs of 868 €/MWh. 706 GW of investment 

decisions are taken regardless of the choice of climate projection 

and can hence be classified as no-regret investments. 

Index Terms – energy system optimization, electricity sector, 

climate change adaption, robust optimization, uncertainty 

I. INTRODUCTION 

Climate scientists project significant changes in climate in 
the coming years [1]. Global Circulation Models (GCMs), 
which model physical properties of the atmosphere and the 
ocean, can project future climate developments, but are subject 
to large uncertainties due to the complexity of the atmosphere. 
Energy systems depend on climate variables, as temperature 
for example influences heating and cooling demand [2]. 
Therefore, future energy systems should be planned 
considering climate development and its uncertainties. 

There are multiple studies dealing with the influence of 
climate and its uncertainties [e.g. 2–8]. Yet, among the studies 
in the field of energy system optimization, the formal 
assessment of uncertainty in general and climate uncertainty in 
particular is still rare [9, 10]. Furthermore, the assessment is 
often limited to either one technology like hydropower [8] or a 
small geographic area [3]. 

The European energy system is highly interlinked both 
among the different technologies as well as geographically, 
thus, in this study, a European electricity system for the year 
2050 is optimized using future climate projections. To assess 

the uncertainty in the projections, six different climate 
projections are used in a robust optimization, which ensures 
that the optimized system meets the demand for all climate 
projections, while at the same time minimizing the costs of the 
most expensive projection. Furthermore, we aim to find at 
which costs robust optimization avoids the loss of load by 
comparing the costs for robust optimization and the avoided 
amount of lost load. Finally, investment decisions, which are 
realized regardless of the climate projection are identified as 
no-regret investments. 

The study is structured as follows: first, the framework for 
the study and the used climate data and optimization strategy 
are depicted in Section II. Section III describes the process of 
converting climate data into energy system input data. In 
Section IV, results are shown, and Section V contains a 
conclusion and an outlook on future research. 

II. MATERIALS AND METHODS 

This section describes the materials and methods, that we 
used. First, the used energy 
system model and the data 
sources for the power system 
are described. The next 
section depicts the used 
climate data followed by a 
section about the used 
optimization strategy. 

A.  Energy system model 

and power system data 

source 

To optimize the 
electricity system, the energy 
system optimization 
framework Backbone is used 
[11]. Backbone is an 
adaptable framework, that 
allows for the modelling of 
different energy systems and 
already incorporates some 

Figure 1: Study area. Dark grey 
lines mark the borders of the nodes
(map created with http://geojson.io) 



 

 

tools for scenario based optimization. The power system data 
and the costs for power system components are exported from 
the power system optimization model pypsa-eur [12]1. The 
study area and the node structure are shown in Figure 1. 

Pypsa-eur records the power plant park of 2015. As the 
European Union plans to be climate neutral by 2050 [13], we 
assume, that there will be no fossil power plants operating in 
2050. Nuclear power plants are decommissioned in Austria, 
Belgium, Germany and Italy, who decided upon phasing out 
nuclear. There are investment possibilities in on- and offshore 
wind, photovoltaic cells as well as battery and hydrogen 
storage. Nuclear power plants are investment possibilities in 
all countries which did not phase out nuclear. There are no 
hydro power and pumped hydro storage investment 
possibilities due to very limited expansion potential in Europe. 
There are also no investment possibilities for biomass power 
plants due to the conflicts with food production. Furthermore, 
we do not consider grid expansion.  

B. Climate Data 

Global Circulation Models (GCMs) aim to depict the 
development of the global climate by modelling oceans and the 
atmosphere using physical relations. These models provide 
climate data on large geographic scales. To depict climate 
development on smaller scales, GCMs can be regionally 
downscaled by using Regional Climate Models (RCM). The 
Cordex initiative provides a coordinated framework for 
regionally downscaled GCMs for the whole globe. In this work, 
we use climate data from the Euro-Cordex  [14], the European 
branch of the Cordex initiative. 

There are many different climate models developed by 
different institutions. Furthermore, climate models provide 
projections for different sceanrios of human greenhouse gas 
emissions. These scenarios follow the Representative 
Concentration Pathways (RCPs) issued by the IPCC [15]. All 
climate models of Euro-Cordex report data from 2006 to 2100. 
The combinations of climate models, RCPs and years used in 
this study can be found in Table I. The different combinations 
will be referred to as Projection 1-6 in the following. 

Table I: Combinations of climate models, Representative Concentration 
Pathways (RCPs) and years used in the study. The number in the first column 
will be used to identify the projection in the following. 

C. Optimization Strategy 

All combinations of climate models, RCPs and years in 
Table I depict possible developments of the future climate. 
Therefore, to design a robust future energy system, all of these 

                                                           
1 The code for the conversion is available at: 

https://gitlab.ruhr-uni-bochum.de/ee/backbone-tools  

projections must be considered. Thus, in this study we use 
robust optimization. Robust optimization is a tool for 
optimization under uncertainty where the costs are minimized 
for the worst possible realization of the uncertain parameters. 
The objective function ��� equals the following:  

��� = min �	
���� + max�  	�����
��(�)�, (1) 

where � are the different projections, 	
���� are the investment 
costs and 	�����
��(�) are the projection-specific operating 
costs [7].  

The results of the robust optimization for all six projections 
are then compared to the results of the single projection 
optimizations. Furthermore, a robust optimization for only four 
projections, which are chosen based on the results of the single 
projection optimization, is conducted. Here, we want to 
determine how much more expensive the inclusion of 
additional projections in a robust optimization is.  

III. CONVERSION OF CLIMATE DATA TO ENERGY SYSTEM 

MODEL INPUT DATA 

Many components of an energy system are 
weather-dependent and therefore also affected by changing 
climate conditions. 

A. Demand 

Energy demand is influenced by the temperature as it 
affects heating and cooling demand. Classifying the 
dependence of the demand is difficult as it is influenced by 
many small-scale variables like housing types and consumer’s 
decisions. To overcome these difficulties, regression 
techniques are common [16–18]. In this study, a quadratic 
regression was performed on daily historical temperature and 
demand data to find countrywide dependencies and yielded 
fair correlation. Examples can be found in the Appendix in 
Figure 8 and Figure 9. 

B. Hydro power 

Hydro power generation also depends on weather 
conditions. The climate models used report the river runoff, 
which equals the amount of water that drains from land. It is 
rather difficult to assess hydro power production without 
looking into site-specific river runoffs, as the hydro power 
production of a plant depends mainly on the weather conditions 
of the specific river or basin. Yet, a detailed assessment of all 
hydro power plants in Europe would go beyond the scope of 
this study. Therefore, the hydro power production is 
approximated by using linear regression, similar to [6, 19, 20]. 
However, performing regression of river runoff and hydro 
power production on a single country level does not yield 
significant trends for all European countries. Yet, a trend could 
be identified on European level (see Appendix Figure 10). 
From this trend, single country hydro production can be 
estimated. The procedure for that is shown in the next 
paragraphs. 

Number Climate model RCP Year 

1 CNRM-CERFACS-CNRM-CM5 2.5 2046 

2 CNRM-CERFACS-CNRM-CM5 2.5 2050 

3 CNRM-CERFACS-CNRM-CM5 8.5 2046 

4 CNRM-CERFACS-CNRM-CM5 8.5 2050 

5 NorESM1-M 2.5 2046 

6 NorESM1-M 2.5 2050 



 

 

First, historical average river runoff  �̅!
�� in Europe is 
plotted against the average hourly hydro production "#$!
�� of 
this month for the years 2010-2015 (see Appendix Figure 10). 
Then, a linear regression is performed between these two 
variables using the slope % and the intercept �. With these 
values, the future hourly hydro power generation "#$&'��� in 
Europe can be calculated from the river runoff �&'��� with the 
following equation: 

"#$&'��� = ( ⋅ �&'��� + �. (2) 

This equation allows for the calculation of the total hydro 
production in Europe. To obtain country-specific values, it is 
assumed, that the ratio of the yearly hydro generation per 
country and the yearly runoff is constant. For the historic period 
(2010-2015) this quotient +, can be obtainted by using the total 
hydro generation of a country in the historic period "#$,(hist) and the total runoff in this country in the historic 
period �,(hist): 

+, = "#$,(hist)�,(hist) . (3) 

For the future climate data, this quotient is then modified to 
account for an in- or decrease in the total European hydro 
production. Therefore, the total hydro production in Europe "#$&'�(fut) and the total historic hydro production in Europe "#$&'�(hist) as well as the total runoff in Europe for the future 
year �&'�(fut) and the total historic runoff in Europe �&'�(hist) 
are used to obtain a weighting factor per country 2,: 

2, = "#$,(hist) ⋅ "#$&'�(fut)"#$&'�(hist) ⋅ �&'�(hist)�,(hist) ⋅ �&'�(fut). (4) 

With this weighting factor 2,, the hourly hydro production 
of a country "#$,(245)6h7 can be determined by using the 
reported hourly runoff �,(fut)6h7 with the following equation:  

"#$,(245)6h7 = 2,8 ⋅ �,(fut)6h7. (5) 

C. Wind 

Wind speeds vary depending on the height. The climate 
model reports the wind speed 9(ℎ;) at a height ℎ;. To calculate 
the wind speed 9(ℎ) at hub height ℎ, the following equation is 
used: 

9(ℎ) = 9(ℎ;) ⋅ � ℎℎ;�</>
 (6) 

The capacity factor 	? of the wind turbine is then calculated 
using standardized production values:  

	? =
⎩⎪
⎨
⎪⎧

0, 9 < 9
�9F − 9
�F9�F − 9
�F , 9
� ≤ 9 < 9�
1, 9� ≤ 9 < 9�'�0, 9 > 9�'�,

 (7) 

where 9 is the actual velocity, 9
� is the cut-in velocity, 9� 
is the rated velocity and 9�'� is the cut-out velocity [17]. 

D. Photovoltaics 

The output of photovoltaic (PV) cells depends on the solar 
irradiation and on the cell temperature, as it influences the cells’ 

efficiency. The power output K of a photovoltaic cell can be 
calculated by:  

K = KLMN ⋅ OOLMN ⋅ PPLMN, (8) 

with the efficiency O and solar irradiation P. If a variable is 
indexed with STC, it refers to the value at Standard Testing 
conditions. The efficiency of the cell depends on the 
temperature of the cell TUVV:  

O = OLMNW1 − X(TUVV − TLMN)Y, (9) 

where X is a coefficient describing the loss of efficiency per 
temperature rise [3, 17]. The cell temperature can be calculated 
from the ambient temperature T�Z and a cell heating coefficient 	 with the following equation [6]:  

TUVV = T�Z + 	 ⋅ P. (10) 

E. Thermal power plants 

The efficiency of thermal power plants decreases with rising 
temperatures as thermal power plants rely on cooling water. 
How much a thermal power plant is affected by changing 
temperatures depends on the used cooling system: 
once-through (OT) cooling systems use fresh water from rivers, 
while closed-loop (CL) cooling systems reuse cooling water. 
Because they draw their water directly from a reservoir, OT 
cooling is much more vulnerable to changing temperatures, but 
also cheaper than CL cooling. In 2014, 43% of US thermal 
power plants where equipped with OT cooling, while 53% used 
CL cooling technologies [21]. As OT cooling requires more 
freshwater resources, we assume, that all European power 
plants will be equipped with CL cooling systems in 2050. The 
temperature dependence of their efficiency O can then be 
calculated using:  

O = [ O;, T ≤ T!�V�!O;W1 − \(T − T!�V�!)Y, T > T!�V�!, (11) 

where T is the actual temperature, T!�V�! is the maximum 
temperature, which allows to the power plant to operate with 
its rated efficiency O; and \ is the efficiency degrading 
coefficient [3]. 

F. Bias adaption 

Due to the challenges that occur when such a complex 
system as the atmosphere is modelled, climate models often 
show a bias when compared to observed data. In most studies 
[e.g. 4, 22], bias correction techniques in combination with 
historical data are used to correct for this bias. In this study, 
empirical quantile delta mapping is used to correct the bias in 
wind capacity factors, PV capacity factors and efficiency of 
thermal power plants. Therefore, for a historic period 
(2011-2015), wind and PV capacity factors, as well as the 
efficiencies of thermal power plants are calculated both with 
the climate model data and ERA5 reanalysis data [23]. Then 
the quantile delta mapping algorithm as described in [24] is 
applied to correct for the bias. Demand and hydro production 
are not bias adapted as they are created using regression 
techniques with historical data.  



 

 

IV. RESULTS 

In this section, first the differences between the single 
optimizations of the different climate projections are displayed, 
followed by the investment decisions and costs for the robust 
optimization. In the next section, the value of lost load is 
calculated. The chapter closes with the identification of 
no-regret investments. Most of the data for the analysis was 
directly taken from pypsa-eur. All other data can be found in 
the Appendix in Table II. 

A. Influence of climate projections on energy system 

optimization results 

Figure 2: Total electricity generation from different technologies 
depending on the climate projection. 

Figure 3: Total investment in different technologies for the six single 
projection optimizations (Projection 1-6) and the two robust optimizations 
(Robust optimization 1-2). 

Figure 2 shows the electricity generation from different 
technologies and the demand. The total production from water, 
biomass and the demand only vary slightly for the different 
climate projections, but there is notably less wind electricity 
production for Projection 3 and 4 than for the other projections. 
Projection 2 shows the lowest production from nuclear power 
plants, which is compensated by higher wind and solar 
production. It also has the highest investments in solar and 
wind power plants as depicted in Figure 3. When looking at the 
average capacity factors in Figure 4, it shows that the weather 
conditions for Projection 2 are unfavorable: the average 
capacity factor for wind energy is 5.4% below the average 
capacity factor for all projections, the average solar capacity 
factor is 6.5% below average and the water capacity factor is 
3.6% below average. Yet, there is a higher wind and solar 

production as in other projections, while nuclear power is 
curtailed. This can be explained as due to the lower capacity 
factors in Projection 2, more investments in generation 
capacities are necessary to meet the demand. It appears that 
despite the lower capacity factors, renewables are still 
economically preferable to new investments in nuclear 
powerplants. Even with lower average capacity factors as in 
Projection 2, there are still timesteps with high capacity 
factors. At these timesteps, renewable production is preferred 
over nuclear power, as the variable costs are lower. This causes 
the unintuitive results that more renewable power is generated 
in Projection 2 despite the unfavorable capacity factors.  

The total annual costs differ among the climate projections: 
the cheapest projection (Projection 4) results in annual total 
costs of 156 billion €, while the most expensive projection 
(Projection 2) results in costs of 193 billion €. The costs for all 
projections are displayed in Figure 5. The different results of 
the projections support the need for an optimization strategy 
that includes all projections. 

 
Figure 4: Average capacity factors (wind, solar, water) and efficiencies 

(nuclear, biomass) for different technologies in the different single projections. 
The bars show the average capacity factors/efficiencies reached in the 
simulations while the crosses mark the maximum possible average capacity 
factors/efficiencies for the projection. 

 
Figure 5: Total annual costs for the six single projection optimizations 

(Projection 1-6) and the two robust optimizations (Robust optimization 1-2). 

B. Robust optimization 

After the single projection optimization, two robust 
optimizations with the objective function reported in 
Equation (1) are performed, once including Projections 1-4 
(Robust optimization 1), and once including Projections 1-6 



 

 

(Robust optimization 2). The projections for Robust 
optimization 1 were chosen such that both the cheapest and the 
most expensive projection were included. Compared to the 
single optimizations, there is more investment in solar power 
and batteries (see Figure 3). It appears, that the combination of 
solar power and batteries is more robust to differing climate 
than wind power. This is underlined by the smaller variation in 
capacity factors among the projections for solar power than for 
wind (see Figure 4).  

The robust planning of the energy system comes with 
additional costs. Compared to the most expensive projection 
(Projection 2), the increase in costs for Robust optimization 2 
is with 2.8% moderate but compared to the cheapest projection 
(Projection 4), the costs rise by 25.1%. The average cost 
difference between Robust optimization 1 and 2 accounts for 
0.21 % and is hence very low. This is not too surprising as 
Robust optimization 1 already includes the most extreme 
projections (2 and 4). Hence, if the energy system is robust to 
these projections, additional robustness to less extreme 
projections comes with very low additional costs. 

C. Costs of avoding loss of load 

 

Figure 6: Lost load, if a projection is scheduled with the investment 
decisions taken for another projection. The x-axis shows the projections that 
were scheduled, while the color code shows, which investment decisions were 
chosen. 

To put additional costs in relation to the benefits of robust 
optimization, we take a closer look at the demand, that cannot 
be met (lost load), when a climate projection is scheduled with 
investment decisions taken for another projection. Therefore, 
five scheduling optimizations are performed for each of the six 
projections using the investment decisions taken for the other 
climate projections. Figure 6 shows the lost load. The lost load 
reaches values between 0 and 140 TWh. The average lost load 
is 23.3 TWh. On average, the additional costs of Robust 
optimization 2 (where no load is lost for any projection) 
compared to the single optimizations are 20.2 billion €. This 
results in an average value of lost load of 868.0 €/MWh. 

D. No-regret investments 

In Figure 7, country-specific investments can be seen. 
706 GW of the investments in solar and wind power are the 
same for all six single and the two robust optimizations. Those 
can be classified as no-regret investment, as they are chosen 
regardless of the climate projection. The biggest no-regret 
investment is solar power in Italy with 257 GW. No-regret 
investments for storages are shown in Figure 11 (Appendix). 

There were no no-regret investments in nuclear power, as there 
were only investments in nuclear power for one projection. 

 
Figure 7: Total investment in wind and solar power per country for the six 

single projection optimizations (Projection 1-6) and the two robust 
optimizations (Robust optimization 1-2). The black lines mark no-regret 
investments. Countries not shown do not have no-regret investments. 

V. CONCLUSION AND OUTLOOK 

This study examined the influence of uncertainty in climate 
development on energy systems. Therefore, six different 
climate development projections were used to optimize the 
European electricity system. The choice of climate projection 
influences the outcome of the optimization model, for example 
the cost difference between the cheapest and most expensive 
projection account for 37 billion €. Robust optimization, which 
was used to plan an energy system robust to all climate 
projections, increases costs on average by 20.2 billion €. Here, 
more solar power and battery storage is installed compared to 
single projection optimization, as the capacity factors vary less 
for solar than for wind among the projections. The average 
costs for avoiding lost load by robust planning amount to  
868.0 €/MWh. In the literature, values of lost load between 
1500 €/MWh up to 130000 €/MWh are reported [25, 26]. Here, 
in any case, robust planning would come cheaper than dealing 
with the lost load. Finally, 706 GW of no-regret generation 
investments can be identified. 

The study is limited, as it only considers the electricity 
sector, however the heat sector might be even more influenced 
by changing temperatures. Electrification in the transport and 
heating sector will probably also enlarge the electricity 
demand in the future. Furthermore, some refinements can be 
made on the conversion routine from climate data to energy 
system input data. Especially the capacity factors for onshore 
wind were lower than expected. Here, the choice of different 
turbine parameters or another method for wind speed 
interpolation can be useful. 

Further research shall be conducted by including more 
climate projections. To limit computational time, robust 
optimization shall be combined with techniques to reduce the 
amount of input data, like Importance Subsampling [27]. 
Furthermore, a more detailed treatment of the costs of robust 
optimization and the costs for avoiding lost load is desirable. 
Finally, as mentioned before, modelling impacts on a 
sector-coupled system might yield interesting results. 
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VII. APPENDIX 

 

 
Figure 8: Relation between daily load and average daily temperature for 

the climate model CNRM-CERFACS-CNRM-CM5 and RCP 8.5 for the 
country Albania. The red line marks a quadratic regression function. 

Table II: Data used for all simulations 

 

 

 
Figure 9: Relation between daily load and average daily temperature for 

the climate model CNRM-CERFACS-CNRM-CM5 and RCP 8.5 for the 
country Switzerland. The red line marks a quadratic regression function. 

 
Figure 10: Average river runoff in Europe plotted against average hourly 

hydro production for the years 2010-2015 in blue dots for the climate model 

CNRM-CERFACS-CNRM-CM5 and RCP 8.5. The red line marks a linear 
regression function.  

 
Figure 11: Total investment in battery and hydrogen storage per country 

for the six single projection optimizations (Projection 1-6) and the two robust 
optimizations (Robust optimization 1-2). The black lines mark no-regret 
investments. Countries not shown do not have no-regret investments. 

 

Variable Value Unit Reference 

ℎ; (onshore) 135 m [28] 

9
� (onshore) 3 m/s [28] 

9� (onshore) 14 m/s [28] 

9�'� (onshore) 25 m/s [28] 

ℎ; (offshore) 114 m [28] 

9
� (offshore) 4 m/s [28] 

9� (offshore) 13 m/s [28] 

9�'� (offshore) 25 m/s [28] 

	 0.03125 Km]/W [6] 

PLMN 1000 W/m] [3] 

TLMN 298 K [3] 

X 0.005 1/K [3] 

\ 0.0044 1/K [3] 

T!�V�! 283 K [3] 


