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Abstract

The European Union has set ambitious targets for expanding renewable energy to

meet emission reduction goals. After a period of subsidy-driven investments, the costs

of renewables decreased strongly and renewable support schemes shift towards more

market-based approaches. We therefore analyse the market-based profitability of wind

onshore and offshore and solar PV across Europe to determine where it is optimal to

invest and understand which factors drive the profitability of investments. We use

a power systems model to simulate the whole European electricity market in 2030.

Using the renewables’ revenues determined by the model, we calculate the profitability

of each technology in each country. We also analyse how effective renewables are in

terms of emission reduction. Investments are found not to be homogeneously profitable

across Europe, i.e. cooperation between European countries can be expected to achieve

the overall targets at lower costs than nationally-driven approaches. We also find that

in many countries, wind onshore and solar PV are profitable by 2030 in absence

of any financial support, whereas wind offshore does never seem profitable without

support. Finally, RES expansion alone will not guarantee an effective reduction of

CO2 emissions.
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- Profitability of solar PV, wind onshore and wind offshore compared across Europe

- Power systems optimisation model used to simulate whole European electricity

market

- Wind onshore and PV profitable by 2030 without financial support in many

countries

- Wind offshore not profitable without financial support

- RES deployment does not automatically guarantee effective reduction of emissions

Table 1: Nomenclature

Symbol Explanation Unit

Objective
Γ total generation costs €

Parameters
γg,f generation costs of generator g using fuel f €/MWhel

φf fuel price of fuel f €/GJ
ǫ CO2 emission price €/t CO2

ηg heat rate of generator g GJfuel/MWhel

σf specific CO2 content of fuel f t CO2/GJ
αg other variable operation costs of generator g €/MWhel

µg max power output of generator g MWhel/h
χ loss of load costs €/MWhel

ψ surplus costs €/MWhel

δc,t power demand for country c at time step t MWhel/h
ρc,t renewable power generation for country c at time step t MWhel/h

Variables
Πg,t power output of generator g at time step t MWhel/h
Λc,t system loss of load for country c at time step t MWhel/h
Ξc,t system surplus for country c at time step t MWhel/h
Γg total generation costs of generator g €
X total loss of load costs €
Ψ total surplus costs €

Indices
c country index -
f fuel type index -
g generator index -
t time step index -

1 Introduction

The European Commission (EC) and the European Council set ambitious targets for 2030

to reduce greenhouse gas (GHG) emissions from the energy sector and secure clean and

efficient energy in the European Union (EU).1 In 2014, EU countries agreed that by 2030,

the share of renewables should be 27% of total energy consumption in order to achieve
1See EC Directive 2009/28, [1] and [2].
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the overall target of 40% GHG emission reduction [3]. This target holds at the EU level,

so all countries should work together either by reducing the energy demand or increasing

generation from renewable energy sources (RES), to achieve the overall goals.

Electricity generation is one of the sectors affected by the EU targets together with

transport, agriculture and industry, as it is one of the major sectors responsible for total

emissions [4]. Following the track started with the 2020 targets on emission reductions,

renewable electricity generation (RES-E) should increase to 49% of total electricity demand

by 2030 in order to be consistent with the overall target on total energy demand, as noted

by the Commission [3] in their own impact assessment analysis. In 2018, these targets

were made more ambitious, as the target share of renewables on total energy consumption

in 2030 has been increased to 32% of total energy consumption [5], setting the ground for

the 2050 European carbon neutrality target.

The installed capacity in renewable energy has increased strongly during the last

decade, when every EU country set up different incentives to promote the investment

in renewable generation. There are several studies that focus on the costs and the regu-

latory changes needed to promote the investments in renewable energy. All these studies

highlight that subsidies given to renewables are positively correlated with the investment

in this type of generation in all EU countries. Papaefthymiou and Dragoon [6] and Held

et al. [7] analyse the impact of increasing RES-E penetration in the EU system and focus

on the associated distribution network costs. Other studies [8, 9, 10, 11, 12] analyse how

regulation and subsidies are necessary to encourage the investment in renewable energy.

During the same decade, however, renewable power generation technologies have ma-

tured strongly. Until 2030, investment costs associated with renewables are expected to

decrease further, making the investment in renewable energy more attractive to market

participants [13]. As a result, renewable support schemes have begun to shift towards

more market-based approaches in recent years [14]. A careful analysis of the market-

based profitability of investments in renewable technologies therefore becomes more and

more relevant. In the absence of subsidies, it is expected that natural resource conditions,

including the availability of wind and solar irradiation with respect to which European

countries differ quite strongly, become increasingly important as part of this analysis.

Moreover, financial market conditions differ significantly between countries, which is ex-

pected to play an important role.

This work therefore focuses on addressing the following two overarching research ques-
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tions:

• How profitable are renewables in the market across Europe and what are the major

drivers of their profitability?

• How effective are renewables in reducing CO2 emissions across Europe?

Despite the importance of the subject, there are not many studies focusing on the

profitability or effectiveness of renewable technologies in 2030 or beyond, in particular

when it comes to comparing countries across Europe. A review of methods adopted

to optimally locate investments in renewables is provided by Tan et al. [15]. Duscha

et al. [16] combined short and long term simulations to find the optimal technological and

economical pattern to meet the emission targets up to 2050. The authors examine the

impact of different RES targets on the EU economy and find that the Commission’s overall

renewable energy target should be a minimum target rather than the maximum level of

RES. The authors show that a RES penetration going beyond the overall EU target results

in higher economic benefits for the Union. As the investment costs of RES decrease over

time, the authors highlight that new investments rely on convenient cost of capital, and

the regulation should then focus on reducing that in the next years. Finally, the authors

point out that offshore wind and tidal energy are not economically efficient, so subsidies

would need to be provided in order to incentivise investments in these technologies if

desired. Safarzyńska and van den Bergh [17] focus on the financial stability associated

with the investment in renewables and find that investments in gas fired plants instead of

renewable technologies would be beneficial in countries in which coal plants are still active

and play a major role in generation. Finally, Knopf et al. [18] find that the cost-efficient

share of RES-E to meet the European targets in 2030 ranges from 43% to 56%, raising

the question about the profitability of new investments above the initial threshold of 49%

identified by the Commission. However, no specific focus is given to the profitability of

specific technologies.

In addition, several works focus on costs linked to RES projects and use the Levelised

Cost of Electricity (LCOE) to assess the feasibility of renewable-driven electrified systems.2

However, while being commonly applied, the use of LCOE in such a context is discussed

controversially in literature. For instance, [22] as well as [23] emphasise that LCOE as a

metric to assess the viability of investments focuses on the cost side only but is not able to

capture effects such as the market value of different (renewable) generation technologies.
2See, among others [19],[20] [21].
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Moreover, [24] highlights the limitations of approaches, such as the LCOE, which are based

on uniform cost of capital assumptions across projects and countries.

In this work we therefore investigate whether the investment in specific renewable

technologies is profitable across Europe. We focus on solar PV, wind onshore and wind

offshore investments, as significant investments in additional hydro capacity are rather

unlikely and limitations to the feedstock potential are found to limit the expansion of

biomass for electricity only generation [25]. In particular, we compare several scenarios

to determine under which conditions investment in renewables would be profitable in

each country without additional financial support. For this purpose, we use a power

systems model to simulate the market-based revenues of different renewable technologies

across Europe. We then use the revenues and costs to calculate two different measures

of profitability: the internal rate of return (IRR), which takes into account the (natural)

resource-driven profitability of the investment in renewables and the net present value

(NPV), which incorporates the cost of capital of the projects, which may vary across

countries and technologies.

In a first step, we focus on the (natural) resource-driven aspects of profitability, i.e.

we calculate the IRR without considering and comparing financing conditions and their

impact on costs of capital between the countries [26, 27]. Although the importance of

providing favourable conditions to credit access for green projects has recently been high-

lighted by [28], quantifying the cost of capital for several technologies in different countries

is not easy, given the limited amount of information available [27]. While the cost of capital

is available for almost all countries in Europe for wind onshore ([27], [29]), cost of capital

for solar PV and wind offshore is available for much fewer countries only. In the absence of

cost of capital information across Europe, the IRR therefore seems like the natural choice

to compare the (natural resource-driven) profitability of RES investments across Europe

- acknowledging that the IRR does not consider any information about financial market

conditions.

In a second step, we then use the information provided by [27] to calculate the NPVs of

the investments for those technologies and countries, where cost of capital data is available.

The differing weighted average cost of capital (WACC) assumptions between technologies

and countries account for the fact that investments in renewables incorporate technology-

specific risks (such as learning experience - [30] and [27]) as well as country-specific risks

and the international conditions of credit access ([26],[27]).
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Finally, we use the power systems model’s output to analyse and compare RES shares

and emissions by country and discuss the determinants of CO2 emissions as well as the

effectiveness of renewables on reducing same.

The remainder of this paper is organised as follows. Section 2 describes the methodol-

ogy and data used. Section 3 presents our results, which we discuss in section 4. Section

5 concludes.

2 Methodology and data

2.1 Methodology

We use the Artelys Crystal Super Grid power systems optimisation model to simulate the

European electricity market in 2030 (EU28 plus Switzerland and Norway).3 The objective

function (eq. 1) of the model is the minimisation of the total generation costs Γg of all

generators g (eqs. 2+3), loss of load costs X (eq. 4) and surplus costs Ψ (eq. 5) across

the EU to meet demand δc,t in each country c at an hourly resolution t and subject to

technical constraints of generators and interconnectors. Table 1 provides an overview of

the nomenclature used within this paper.

min Γ =
∑

g

Γg +X + Ψ (1)

Γg =
∑

t

Πg,t · γg,f (2)

γg,f = (φf + ǫ · σf ) · ηg + αg (3)

X =
∑

c

∑

t

Λc,t · χ (4)

Ψ =
∑

c

∑

t

Ξc,t · ψ (5)

The model optimises the power outputs Πg,t ≤ µg of each generator g at each time step

t considering a number of constraints for each generator such as µ constraints or ramping

constraints, as well as interconnection constraints and using load δc,t and renewable gener-

3See: https://www.artelys.com. We thank Artelys for the provision of the software and their support.
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ation ρc,t time series data as exogenous input. The main decision variables are the power

outputs Πg,t as well as the system loss of load Λc,t and the system surplus Ξc,t for each

country c at each time step t. For further information on the model, please see Bossavy

et al. [31].

In these simulations a competitive market is assumed across the EU (i.e. no market

power and power plants bid their short run marginal cost) and we assume perfect fore-

sight, whereby the model has full knowledge of all input variables such as demand and

variable renewable generation output. This hypothesis does not allow us to investigate

the potential beneficial effects of competition in mitigating anti-competitive behaviour in

different markets, as noted by Neuhoff et al. [32]. The resulting market price is calculated

as the marginal price at member state level and does not include any extra revenues from

potential balancing, reserve or capacity markets or costs such as grid infrastructure cost,

capital costs or taxes.

For the economic assessment, we first calculate the internal rate of return (IRR) for

solar PV, wind onshore and wind offshore at member state level. We use the IRR to com-

pare the (natural) resource-related profitability of investments across Europe and deemed

the IRR to be most appropriate for this purpose.

The IRR is the interest rate i that leads to an NPV or annuity of €0 including the

cash flows CFt (revenues and expenses, including investments CF0) over all time periods

t ∈ {0, ..., T} of an investment project, where T is the project’s lifetime (see equation (6)).

NPV =
T∑

t=0

1
(1 + i)t

CFt ≡ 0 (6)

.

Second, where available, we use the WACC data provided by [27] to calculate NPVs

(where the WACCs are inserted as i in equation 6) associated with the different renewable

technologies. As noted previously, the WACC data provided reflects technology-specific

as well as country-specific risks associated with renewable power projects.

As shown in Section 3.5, we consider different lifetimes of the projects (with our baseline

being 20 years). Artelys calculates annual revenues based on the hourly generation by

technology and country and hourly prices by country assuming marginal costs of zero for

the considered technologies. Capital and fixed operational expenditures are considered

ex-post and, together with the revenues calculated by Artelys, provide input to our IRR

calculations according to equation (6). We consider the year 2030 as a ’snapshot’ and
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assume that each technology (solar PV, wind onshore and wind offshore) in each country

has the same revenue for each year of its lifetime. We acknowledge that this is a limitation.

However, given that the main focus of our analysis is the comparison between countries

across Europe, we expect that the impact of this simplification is limited.

2.2 Data

The input data for our analysis can be structured into three main categories: a) supply

and demand data for modelling the European power system, b) fuel and carbon prices,

and c) capital and fixed operational expenditures of the considered RES-E technologies.

a) Supply and demand data

The supply and demand input data to Artelys are largely based on Deane et al. [33].

This includes data on the generation portfolio and demand for the 28 European member

states from the 2016 European Commission modelling of a Reference Scenario (PRIMES)

of the future European Energy system.4 The Reference Scenario is one vision of the

European power system in 2030 based on business-as-usual assumptions, including full

implementation of European climate and energy policies adopted by December 2014 to

achieve a renewable electricity penetration of 49% in 2030 up from 27.5% in 2014.5 Note

that the 2030 portfolio in the PRIMES 2016 scenario does not exactly match the recent

EU target to achieve 32% of renewables in final energy consumption by 2030 (see [34]).

The projections used here are designed to meet a 49% target for renewable electricity.

4PRIMES is a partial equilibrium model that provides projections of detailed energy balances, both
for demand and supply, CO2 emissions, investment in demand and supply, energy technology penetration,
prices and costs”. The projections are set up in order to meet the EU 2016 targets on emissions for 2030
(see http://ec.europa.eu/environment/archives/air/models/primes.htm.

5The generation mixes of Switzerland and Norway are not included in the PRIMES scenario. Swiss
data was developed based on data available from the Federal Department of the Environment, Transport,
Energy and Communications (DETEC). Norwegian data was developed based on data available from the
Norwegian government (see: https://www.regjeringen.no) for thermal power plants and the Norwegian
water resources and energy directorate (NVE, see: https://www.nve.no) for renewables including hydro
power.
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Table 2: Installed RES capacity, MW, by country, 2030

Country Wind Onshore Wind Offshore Solar Hydro Other Renewables

AT 4,545 0 2,821 13,756 815
BE 3,557 3,350 3,818 1,484 820
BG 2,122 0 2,572 2,338 101
CH 834 0 5,272 16,587 0
CY 229 0 529 0 11
CZ 488 0 2,391 1,109 274
DE 57,796 9,418 63,959 13,102 7,065
DK 4,134 2,318 838 10 2,870
EE 445 0 1 8 154
ES 29,824 64 24,564 16,795 1,923
FI 2,763 152 19 3,461 3,330
FR 23,717 7,055 25,382 28,803 4,350
GR 6,038 0 5,616 3,579 232
HR 682 0 686 2,190 29
HU 477 0 106 57 409
IE 4,003 131 19 587 208
IT 15,574 3 24,562 18,939 6,182
LT 467 0 74 116 139
LU 302 0 131 1,345 35
LV 238 48 2 1,589 108
MT 0 0 198 0 2
NI 1,525 500 4 0 133
NL 6,975 3,121 5,586 37 2,308
NO 1,000 0 15 30,495 155
PL 9,442 897 99 1,039 2,105
PT 6,275 28 2,172 9,971 693
RO 6,017 0 2,223 6,645 157
SE 9,013 0 88 16,742 3,161
SI 242 0 779 1,284 118
SK 19 0 680 1,725 332
UK 18,550 12,846 11,040 4,624 17,233

Total 217,292 39,930 186,243 198,416 55,451

In addition to the data of the PRIMES Reference Scenario, hourly wind power gen-

eration for each Member State was taken from Aparicio et al. [35]. Hourly solar profiles

for each Member State were developed using NREL’s PVWatts® Calculator web applica-

tion, which determines the electricity production of photovoltaic systems based on system

location and basic system design parameters. Wind and solar profiles on the one hand

as well as demand profiles on the other hand are taken from the same meteorological

year (2012) so as to account for the weather-related correlations between these profiles

and ensure consistent model input. Installed capacity and hourly generation profiles are

considered at a country level, so our model does not take into account the location of

different generators within each country. Capacity factors and generation profiles are as-
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sumed to be representative of an ’average location’ for each country and technology (solar

PV, wind onshore and wind offshore). We acknowledge that this assumption is simplistic

and that capacity factors typically decrease over time because of (i) wear and tear and

(ii) reduced ’quality’ of locations with increasing penetration as the ’best’ locations are

exploited first. At the same time, however, technological advances and repowering lead

to increasing capacity factors. We assume that these competing effects even out and the

overall generation for each country and technology is in line with the PRIMES scenario.

Finally, our model includes the network interconnection capacities between EU countries,

as described in ENTSOE [36] for 2030.

The installed RES capacities by country, which are taken from PRIMES, are sum-

marised in Table 2.6 In this paper, RES capacities include hydro and thermal RES, where

the latter is the sum of biomass, geothermal and other renewables. Table 2 reveals that the

installed renewable capacity is not distributed homogeneously across Europe. Countries

in the South, such as Spain and Portugal, have a higher proportion of solar generation

than countries like Belgium or Ireland. Northern countries are rich in wind generation,

and Central European countries have a variable proportion of both resources.

b) Fuel and carbon prices

The fuel prices used in our analysis are taken from DECC [37] and summarised in

Table 3. The generators’ costs are based on fuel costs, emission costs and heat rates.7

Table 3: Fuel price assumptions, (€2010)

€/GJ Nuclear Coal Gas (CCGT, OCGT, derived gas) Oil Carbon

Low 2.00 2.40 5.70 10.00 20.00
Baseline 2.00 2.90 8.50 14.80 37.00
High 2.00 3.70 12.30 21.50 40.00

Data source: DECC [37]. Exchange rate €/GBP=0.858

c) RES capital and fixed operational expenditures

As in Slednev et al. [38], capital and fixed operational expenditures are taken from

Taylor et al. [39]. For 2015, their assumptions are 1,810 US$/kW for solar PV, 1,560

6Data on installed capacity for conventional generation are also taken from PRIMES and are summarised
in the Appendix

7Production costs for power plant type i, inclusive of CO2, are calculated as:

P rodCosti = F uelP ricei ∗ HeatRatei + ET S ∗ (HeatRatei ∗ CO2EmissRatei) (7)

The assumed CO2 emission rates are 93.6 kg/GJ for coal, 55.9 kg/GJ for gas and 77 kg/GJ for oil.
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US$/kW for wind onshore and 4,650 US$/kW for wind offshore translating into 1,629 €/kW

for solar PV, 1,404 €/kW for wind onshore and 4,185 €/kW for wind offshore assuming

an exchange rate of 1 US$= 0.90 €. For 2025, Taylor et al. [39] assume technology costs

of 790 US$/kW for solar PV, 1,370 US$/kW for wind onshore and 3,950 US$/kW for

wind offshore translating into 711 €/kW for solar PV, 1,233 €/kW for wind onshore and

3,555 €/kW for wind offshore. Given that our study focuses on 2030, we will use the

assumptions for 2025 as baseline technology costs. However, we have also carried out

the analysis using the higher 2015 cost values as a robustness check. Moreover, these

assumptions will be varied in a number of additional sensitivity analyses the results of

which are presented in section 3.4. In terms of fixed operating and maintenance costs,

we assume 1% of the specific investment costs per year for solar PV and 2% for wind

onshore and wind offshore. The lifetime of the investment is assumed to be 20 years for all

considered technologies. Again, we will vary this assumption (see section 3.5) to explore

the impact of longer/shorter lifetimes.

3 Results

We now present the results of our analysis. Section 3.1 provides an overview of the achieved

RES-E shares by country and technology in 2030, whereas section 3.2 provides insights

into the different technologies’ profitability in each country. Subsequently, sections 3.3-3.5

illustrate the impact on the IRR when varying the assumptions in relation to fuel prices,

technology costs and lifetime respectively. Finally, section 3.6 provides insights into the

relation between RES shares and emissions.

3.1 RES-E shares

First, we calculate the renewable penetration using the model results. With our assump-

tions including the demand and generation portfolio from PRIMES, the share of renewable

electricity generation (hydro, solar, wind, biomass and other renewables) is 49% of the total

European electricity demand. This is in line with the recommendation by EU Commission

Staff [40] to meet the EU 2030 target in relation to total energy demand.

Figure 1 examines the proportion between RES-E generation and demand for each EU

country (plus Switzerland and Norway). Figure 1 shows that Switzerland and countries

in Scandinavia, e.g., Denmark and Norway, have the highest RES-E over demand pro-

portion. These countries are followed by Austria (driven by their hydro power capacities,
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similar to Norway and Switzerland), the UK and a couple of Southern-European coun-

tries such as Portugal (79%), Greece (66%) and Spain (57%). Figure 1 also shows that

countries with a very high overall RES-E share but without significant hydro capacities

(e.g., Denmark and the UK) have rather high shares of other (thermal) RES-E. More-

over, it shows that with very few exceptions, the wind onshore shares are higher than

the solar power shares. Overall, Figure 1 reveals that the expected RES shares in 2030

differ significantly across Europe. Because of differing RES-E capacity factors (mainly

influenced by the geographical and meteorological conditions) and wholesale electricity

market price levels and structures, we also expect the profitability of RES investments

to differ strongly between countries. As for all models of this kind, electricity prices in

our model are largely determined by the fuel and carbon prices assumed so they change

accordingly with our assumptions in the different scenarios we considered. We assume

that interconnection capacities between the countries have been realised according to the

10 year network development plan (TYNDP). As a result, electricity may flow between

the EU countries, leading to price convergence across the states. Thus, for our baseline

assumptions, electricity prices range between 60 and 70 €/MWh for all countries, with

the exception of France (where prices are lower - mainly because of nuclear power) and

Poland (where prices are higher - mainly because of old coal power).

In the following subsections, we therefore analyse the profitability of solar PV, wind

onshore and wind offshore according to the PRIMES model based on their economic

performance in 2030 for each member state aimed at understanding which countries have

favourable conditions for which technologies.
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Figure 1: Proportion of RES generation on total demand, 2030
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3.2 Profitability of investment in RES-E

Figure 2 provides an overview of the profitability of the three considered RES-E technolo-

gies across Europe on the basis of both the IRR and the NPVs. The IRR of wind onshore

investments increases from the left to the right. For the baseline fuel price and technology

cost assumptions, investments in wind onshore have a higher IRR than those in solar PV

for half of the countries, while solar PV has a higher IRR for the other half. The IRR of

wind offshore is negative throughout.

Broadly speaking, four categories of countries can be identified. First, there are a

number of countries (e.g., in Scandinavia and other parts of Northern or Western Europe)

where wind onshore is rather profitable, whereas the profitability of solar PV is low. Sec-

ond, there is a group of countries in the South-Eastern part of Central Europe where solar

PV is rather profitable, whereas wind onshore investments reach their lowest IRRs (e.g.,

the Czech Republic, Slovakia, Hungary and Bulgaria). Third, there are some countries in

Central Europe where the profitability of both solar PV and wind onshore is rather low

(e.g., Luxembourg, Lithuania and Slovenia). Fourth, there are a few countries in Southern

Europe with coastal access where the profitability of both technologies is rather high (e.g.,

Portugal, Greece and Cyprus).

Looking at the investment in solar power, Italy, with a large capacity of solar PV

installed, has the highest IRR for this technology, followed by other countries in Southern

Europe (Malta, Greece, Cyprus and Portugal). Looking at the investment in wind onshore,

the Netherlands, Cyprus and Greece achieve the highest IRRs, followed by a number

of Scandinavian countries (Finland, Denmark, Sweden) and the UK. The situation is

structurally similar for wind offshore investments. This technology achieves the relatively

highest IRR in the Netherlands, followed by Finland, Denmark and the UK. However, for

the baseline technology cost assumptions, this relatively highest IRR in the Netherlands

is still negative.

When assuming today’s (2015) technology costs as a robustness check without a de-

crease over time, it is interesting that wind onshore investments are more profitable than

solar PV investments for all considered countries. In terms of the achieved IRRs, there

is a step change in terms of the IRR levels of solar PV investments, whereas the IRR

of wind onshore investments only decreases by around 2%. This is mainly driven by the

much stronger cost reduction assumptions until 2025 in the case of solar PV as compared

to wind onshore. This underlines the importance of reducing PV technology costs from
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today’s levels in order to ensure sufficiently high IRRs for this technology across Europe.

It is interesting to observe that the rank order (between countries) for the NPV com-

pared to the IRR differs strongly, e.g., for wind onshore where there is cost of capital

data available almost across all of Europe. There is a group of five countries (Germany,

Belgium, Denmark, Finland and the Netherlands) that stand out in terms of the wind

onshore NPVs. While there are places in Southern Europe, such as Greece or Cyprus,

which range among the areas with the highest IRRs, the NPVs are around zero because

of much higher country-specific capital risks (lower financial stability).

Overall, investments in wind onshore seem generally profitable in several Northern

European countries, where both meteorological and financial conditions are beneficial for

this technology. Wind onshore also achieves a high IRR in some countries on the Mediter-

ranean or Atlantic coast, the latter having favourable resource conditions for both solar

PV and wind onshore. However, the financial conditions are much less stable for most of

these countries leading to higher costs of capital and lower NPVs. Finally, a number of

countries in Central and Eastern Europe neither have favourable conditions for PV nor

wind - neither from a resource perspective nor from a cost of capital perspective. This

raises the question if the import of renewable energy (certificates) from EU countries with

more favourable conditions could be a viable option for these countries. Whether such

an approach would really lead to meeting the RES targets at reduced costs, however,

depends on many factors. For instance, shifting RES investments to countries with more

favourable RES conditions may challenge the power grid and require grid reinforcements,

which may lead to higher costs than a more balanced distribution of RES investments

across EU countries. This question should therefore be part of future research.

In the next sections we stress our hypothesis by changing the fuel prices, technology

costs and the lifetimes of the investments. In the absence of cost of capital data across

technologies and countries, the sensitivity analysis presented in the following sections will

focus on comparing the natural resource-driven aspects of profitability across Europe by

means of the IRR.
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3.3 Impact of fuel price variations on the profitability of RES-E invest-

ments

Figures 3 and 4 show how the IRRs of the different RES-E investments change when fuel

prices (and hence electricity prices) are higher or lower than the baseline assumptions

(see Table 3 for the corresponding assumptions in the High and Low scenarios), while the

technology costs are not changed. As expected, higher fuel prices increase the profitability

of solar PV (see Figure 3a). Italy and Malta still achieve the highest IRRs for solar

investments, now exceeding 18%. However, a number of countries in which the IRR was

below 5% for the baseline assumptions now achieve an IRR of 8-9% (e.g., Scandinavia,

the UK or Ireland). On average, the IRR increases by around 4% in the High fuel price

scenario compared to the baseline fuel price scenario. In contrast, lower fuel prices result in

IRRs around or below zero for solar investments for some countries (e.g., France, the UK,

Ireland and Scandinavia). On average, the IRRs are around 5.5% lower in this scenario

than for the baseline assumptions.

Figure 3b shows similar effects for wind onshore. On average, the IRRs are around

4.5% higher in the High fuel price scenario compared to the baseline scenario. Lower fuel

prices result in IRRs that are around 6.1% lower on average than in the baseline scenario

for this technology. This means that the IRRs for wind onshore investments are negative

for some countries, including Slovenia, Luxembourg, Lithuania, Bulgaria and the Czech

Republic, while Hungary and Romania yield IRRs of around zero under these fuel prices.

Figure 4 shows how wind offshore investments are affected by the different fuel price

scenarios. In the scenario with high fuel prices, the IRRs are around 3.5% higher on

average than under the baseline assumptions. While in the baseline scenario the IRRs

for wind offshore were negative across Europe, the IRR is slighty positive under high fuel

prices in the Netherlands (around 0.5%), followed by Finland and Denmark. Under low

fuel prices, the IRRs of wind onshore would be strictly negative across Europe (around

6.4% lower on average than for the baseline assumptions), whereby the order between the

countries remains largely unchanged.

Overall it is interesting to note that the fuel price variations do not have the exact

same impact on all countries. For instance, Figure 3b shows that for wind onshore, the

order between the countries would be slightly different under the High scenario than under

the Baseline scenario. This can be explained by different power systems and generation

portfolios, which are affected by the fuel price variations in different ways.
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Figure 4: Impact of fuel price variations on the IRR of wind offshore investments across
Europe, 2030

3.4 Impact of technology cost variations on the profitability of RES-E

investments

For the considered technologies, the study by Taylor et al. [39] suggests that there will be

huge reductions of investment-related costs by 2025. However, there is obviously also a

very high uncertainty related to these reductions, which is yet higher in our case given that

our analysis is based on 2030. A thorough sensitivity analysis of the impact of changes

in technology costs on the profitability of RES-E investments is therefore very important.

We shall do this using fuel price assumptions of the baseline scenario.

Figure 5a shows how the IRR of solar PV investments changes across Europe when

the specific investment costs of solar PV vary between 500 e/kW and 1,750 e/kW (where

Taylor et al. [39] expect 711 e/kW by 2025). It becomes obvious that such cost reductions

lead to a step change in profitability of PV across Europe. Already a slightly less ambitious

reduction to 1,000 e/kW would result in positive IRRs for the vast majority of countries

in Europe and in IRRs around or above 5% for a third of the member states.

Figure 5b shows how specific investment costs of wind onshore varying between 1,000

e/kW and 2,000 e/kW affect the IRR of wind onshore across Europe (where Taylor et al.

[39] expect 1,233 e/kW by 2025). If technology costs of wind onshore remained unchanged

or increased slightly, the IRRs would still be positive in most countries. However, if the

specific investment costs fell to around 1,000 e/kW, the IRRs would exceed 5% across

Europe, while for two thirds of the countries they would exceed 10%.
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Figure 6: Impact of technology cost variations on the IRR of wind offshore investments
across Europe, 2030

Figure 6 shows how technology cost variations between 2,000 e/kW and 3,500 e/kW

would affect wind offshore investments. While Taylor et al. [39] expect 3,555 e/kW by

2025, Figure 6 shows that reductions to 2,000 e/kW would be necessary to achieve a

positive IRR in most countries with wind offshore potential. However, even for such

significant cost reductions, the IRR would not exceed 5% in any of the countries, which

may not be sufficient to make this a viable investment given the scale of offshore projects.

3.5 Impact of lifetime variations on RES-E investments

We now explore how changes in the expected lifetime of solar and wind projects affect their

profitability, where our baseline assumption is 20 years (see section 2.2). Figure 7 shows

that for both solar PV and wind onshore, decreasing the lifetime expectation to 15 years

would result in IRRs that are around 2% lower on average. An increase in the lifetime of

the projects would have a slightly lower positive effect. The IRRs for both technologies

would be around 1% higher for a lifetime of 25 years (compared to 20 years), while the

IRRs would increase by another 0.5% for a lifetime of 30 years (compared to 25 years).

Furthermore, Figure 7a shows for solar PV investments that a lifetime reduction to 15

years would lead to an IRR of below 4% in almost 50% of the countries. An increased

lifetime of 25 years, however, would ensure an IRR of at least 6% in almost all countries.

For wind onshore, Figure 7b shows that the IRR would fall below 6% if the lifetime was

reduced to 15 years. A lifetime increase to 25 years, would ensure an IRR of at least 8%

for two thirds of the countries. However, countries in Northern Europe (Estonia, Finland,

Sweden and Norway) and Western Europe (Belgium, UK, Netherlands) as well as Cyprus

and Greece achieve IRRs of around or higher than 8% for all considered lifetime scenarios.
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Figure 8: Impact of lifetime variations on the IRR of wind offshore investments across
Europe, 2030

Figure 8 shows that the IRR of wind offshore investments is yet more sensitive to

lifetime variations than the IRR of wind onshore or PV. A lifetime reduction of offshore

projects to 15 years would come along with IRRs that are around 4.5% lower on average.

A lifetime increase to 25 years would lead to IRRs that are around 2.5% higher on average

(compared to 20 years), while the IRRs would increase by another 1.5% for a lifetime of

30 years (compared to 25 years). However, with the exception of an assumed lifetime of

30 years in the Netherlands the IRRs remain negative under all lifetime scenarios for the

baseline technology cost and fuel price assumptions.

3.6 Relation between RES shares and CO2 emissions

Figure 9 shows the relative RES shares and specific CO2 emissions for each of the con-

sidered countries. This comparison is highly relevant since RES expansion is one of the

main pillars of EU policy to achieve the overall target of 40% GHG emission reduction

[3, 5]. As expected, Figure 9 shows that countries with very high RES shares, such as

Austria, Switzerland or Norway have very low specific CO2 emissions, whereas countries

with very low RES shares in 2030, such as Poland, have much higher specific CO2 emis-

sions. It is interesting to observe, however, that countries with moderate and very similar

RES shares, such as Italy, Ireland and Germany, differ significantly in terms of their spe-

cific CO2 emissions, where Germany is found to have the second-highest specific emissions

in Europe. This can be explained by the different power system structures. While the

three countries are similar in terms of their RES shares, they differ with respect to their

conventional power generation technologies. Italy and Ireland have a gas-dominated con-

ventional power generation system, whereas Germany’s conventional power generation is
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Figure 9: RES shares and specific CO2 emissions across Europe, 2030

still dominated by coal-fired power plants. In the absence of any relevant carbon price

(floor), this results in (less carbon-intensive but more expensive) gas-fired generation being

pushed out of the market in Germany, whereas the (more carbon-intensive and cheaper)

coal-fired generation remains in the market. This finding also holds for other countries

with a relevant share of coal capacities, such as Poland or the Netherlands but it is most

relevant for Germany in the light of its high total demand resulting in the highest absolute

CO2 emissions in Europe, followed by Poland. To summarise, Figure 9 shows that the

effectiveness of RES in terms of reducing CO2 emissions depends to a large degree on the

power system structure and the carbon pricing policy.

4 Discussion

The results in the previous section highlight that the market-based profitability of RES-E

investments differs substantially across Europe. While some technologies are profitable in

some countries without any additional subsidies, the same or other technologies are not

profitable in other countries. Consequently, if all countries, for whatever reason, sought to

deploy all RES technologies within their own jurisdiction, additional incentives would need

to be provided to investors, which would ultimately be borne by the consumers. In theory

this suggests that, as long as interconnection capacities between countries are sufficiently

high, it would be more efficient to export renewable generation from countries in which

natural and financial conditions incentivise the development of renewable generation to

other countries in which these conditions are less favourable. However, the issue of trading

23



so-called Renewable Energy Certificates (RECs) or Guarantees of Origin (GOs) is debated

controversially. While those in favour of an approach for cross-border trading of renewables

[e.g., 41] would broadly follow the same arguments outlined above, those against such an

approach [e.g., 42] would typically highlight the administrative barriers and increasing

risk for investors ultimately turning into increased costs to consumers. In contrast, Green

et al. [43] propose a market design aimed at facilitating long-distance trading of renewable

energy, hence mitigating existing barriers. Altogether, it should be noted that our analysis

across the EU focusses on 2030 and shows that the considered RES technologies can be

profitable in quite a few countries without any subsidies, largely driven by cost reductions

of RES technologies. This suggests that spikes of REC prices as anticipated by Haas

et al. [44] for trading-based RES support systems within individual countries should not

be expected, at least not to the same extent.

In this paper, we present IRRs and NPVs for different RES-E technologies across

Europe. For an adequate interpretation, it is important to note that these have been

calculated using wholesale electricity prices and a uniform payback period of 20 years.

We acknowledge, however, that in reality there are different investors with different ex-

pectations and considerations. Energy companies or investment funds are likely investors

in wind onshore capacities [45], which suggests that the use of wholesale electricity prices

is adequate. In the case of solar PV, on the other hand, and indeed some wind onshore

projects, likely investors also include non-energy companies [46], whose investment consid-

erations would be based on industrial tariffs rather than wholesale prices. In addition, the

perception of regulatory or technology-related risks are important determinants of (energy

as well as non-energy) firms’ investment behaviour [47]. Finally, residential households

are very likely investors for small-scale solar PV assets. Their investment considerations

are usually based on residential retail tariffs as well as a number of non-economic as-

pects, such as investing in green technologies or achieving a certain level of autonomy

[48, 49, 50, 51, 52, 53]). For the latter two (investments by non-energy companies and

residential households), the IRR estimates based on wholesale prices should therefore be

understood as lower boundaries as the wholesale prices are only one component of the

total industrial and residential retail tariffs. Moreover, costs of capital will vary between

investors (e.g., between household-level and utility-scale PV investments), which will have

a major impact on NPV calculations.

Overall, the rates of return required to undertake an investment in RES technologies
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vary significantly between different types of investors [54] and may also vary across coun-

tries. For instance, our results (see Figure 2) show that the IRR of solar PV investments

is below 7% for around half of the countries, which may not be enough to incentivise util-

ities to invest in this technology [55]. For residential households, studies show that these

face a market interest rate between 1% and 3% [56, 57] and may consider 15 years as a

reasonable payback period for their investment. At the household level, the investment in

solar PV may therefore be undertaken in most of the countries by 2030 (see Figure 7a).

As for wind offshore, it is interesting to observe that this technology is almost never

profitable in our analysis, which concurs with findings by Green and Vasilakos [58] and

Duscha et al. [16]. However, in recent auctions held in Germany for instance, investors

submitted bids for wind offshore projects without any financial support.8 One possible

reason could be that the investors expect strong reductions in investment costs associated

with this technology [59]. However, our analysis on the impact of technology cost variations

(see Figure 6) shows that even for a reduction of wind offshore investment costs to 2,000

€/kW (i.e. a reduction to around 50% of today’s costs), the IRR does not exceed 5% in

any of the countries and does not exceed 3% in most countries. In order to understand

under which conditions wind offshore may become profitable, we carried out an additional

sensitivity analysis on the corresponding capacity factors. For this purpose, we increased

the capacity factors of wind offshore in all countries proportionally reflecting technological

improvements. With a capacity factor between 40 and 50% for all the countries with wind

offshore potential, however, we still find that capital costs above 2,500 €/kW result in IRRs

below 6% for all countries. This suggests that there may be other considerations behind

these wind offshore bids. Either, the investors expect lower technology costs in combination

with high fuel prices and/or longer lifetimes or they may evaluate the importance of

entering in this market as a strategic option and may re-evaluate their investment decisions

over time, e.g., as information about new support schemes (to be put in place by 2030)

becomes available [60]. However, such ‘wait-and-see’ strategies have been proven to be

detrimental [61]. We acknowledge that all these factors are crucial to understand the

strategy of the investors in wind offshore but they cannot be included within the scope of

this paper.

While the focus of this paper is the assessment of the economic viability of different

renewable technologies across Europe on the basis of the IRR and (partly) NPV, there are

8https://www.cleanenergywire.org/news/support-free-bids-again-germanys-second-offshore-wind-auction

25



non-economic considerations which are important, in particular for policy makers, in the

context of RES-E deployment. Above, we already mentioned non-economic determinants

of investments such as the willingness to pay for ‘green investments’ or autonomy. Another

crucial aspect for the successful and timely deployment of renewables is the public accep-

tance of these investments, i.e. not the acceptance by those investing but by those who

are affected by the investments [e.g., 62, 63]. Acceptance of renewable technologies usu-

ally depends on the technology type (e.g., solar vs. wind), the size of the investment and

the geographical distance between the built capacity and the people affected [64, 65, 66].

For instance, studies show that (i) the social acceptance of renewable projects is inversely

related to the geographical proximity to residential dwellings and (ii) that the acceptance

of solar PV is much higher than that of wind onshore even at very low distances to peo-

ple’s homes [e.g., 62, 66, 67]. Moreover, existing research has found that in some regions

the public acceptance of wind offshore is higher than that of wind onshore [68]. This is

important to understand for both policy makers and investors as such considerations of

public acceptance may counterbalance the economic advantages of wind onshore to some

extent. While policy makers might give preference to solar PV or even wind offshore

instead of wind onshore with the objective of ensuring a timely achievement of the Euro-

pean renewable energy targets, investors might give preference to solar PV hoping to avoid

project delays. Overall, this underlines the importance of understanding the investment

economics and public acceptance of different RES-E technologies as well as the tradeoffs

people make and their willingness to pay for the second-cheapest or even third-cheapest

RES-E technologies if their acceptance levels are higher. The analysis presented in this

paper is one contribution to resolving this conundrum.

Finally, the analysis in the previous section has highlighted that renewable deploy-

ment alone does not guarantee an effective reduction of CO2 emissions. Depending on

the power system structure and carbon price levels, renewables may push gas-fired gen-

eration out of the market rather than coal-fired generation, which has a limited effect

on emission reduction. As a result, we have identified Germany as the country with the

second-highest specific and highest absolute CO2 emissions in Europe, which shows the

limitations of Germany’s “Energiewende” policy to date. It is important to note though

that Germany has recently decided to phase out coal-fired power generation through a reg-

ulatory mechanism. Given the time line of the planned coal phaseout (last unit is planned

to be decommissioned in 2038), however, the assumption that Germany has “solved” the
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problem would be misleading. Since it is not merely relevant to reduce emissions until

a certain target year but the cumulative emissions should not exceed a certain carbon

budget, Germany’s power generation sector should still be a matter of concern. A regu-

latory plan to phase out coal-fired power generation will do little to the emissions of each

coal-fired power station until the final shut-down. Instead, an appropriate carbon price

floor should be introduced, which ensures a fuel switch from coal to gas. This would be

a helpful instrument, complementing both RES deployment and coal phase-out, since it

would increase the effectiveness of RES in terms of emission reduction. This recommen-

dation is in line with previous work by Kalkuhl et al. [69] and Huntington et al. [14], who

both suggest that it is usually most efficient to price externalities directly.

As for all quantitative studies, the analysis and results presented in this paper come

along with some limitations and therefore need to be interpreted with caution. For coun-

tries and technologies, where cost of capital data is available (e.g., wind onshore for most

countries), we calculate the internal rate of return (IRR) as well as the net present value

(NPV). While the NPVs include aspects of financial market conditions by considering

country-specific and technology-specific costs of capital, the IRRs only focus on the (natu-

ral) resource-driven aspects of profitability. Consequently, conclusions about the financial

feasibility of projects can only be drawn for wind onshore projects in most countries,

whereas for the other two technologies considered, such conclusions are not possible for

most countries in the absence of the required cost of capital information. This is impor-

tant to bear in mind when interpreting the results since the rank orders according to the

IRR as compared to the NPV may vary significantly between countries (see Figure 2 as

well as [26, 27]). Moreover, Ceseña et al. [70] as well as Santos et al. [71] highlight that a

real option analysis would be better suited than the IRR methodology, in particular when

investors face uncertainty and may postpone their investment decision. However, in the

framework in this paper, we consider only one year (2030) and we acknowledge the sim-

plifying assumption that the projects have constant annual cash flows over their lifetime.

Nevertheless, the IRRs and NPVs assessed here, give a sound estimate of the profitability

of each project, and (in our specific case) is also a good measure to compare projects

between different countries. Moreover, in order to calculate the costs associated with the

investment in renewable generation, we assume that the costs of solar and wind technolo-

gies are the same across Europe. We acknowledge that this is a simplifying hypothesis

that may be changed in future work. Finally, our analysis is based on the PRIMES 2016
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scenario for 2030, which does not exactly match the recent EU target to achieve 32% of

renewables in final energy consumption by 2030 (see [34]). For some countries, we can

already see that the PRIMES scenario used here has underestimated the dynamics of RES

developments. Assuming that the actual RES shares in some countries are higher than

assumed in the scenarios, we can expect that – ceteris paribus – the power prices would be

slightly lower reducing the profitability of RES investments. At the same time, however,

a faster RES expansion may be accompanied by stronger technology cost reductions and

possibly WACC reductions (because of reduced perceived risk), which in turn would be

positive for the profitability of renewables. The extent to which these competing effects

balance out is impossible to anticipate but it is important to be aware of this uncertainty

when interpreting the results of the analysis.

5 Conclusions

This work has estimated the market-based profitablity calculating IRRs and NPVs for

different renewable technology investments across Europe, i.e. no financial support for

renewables outside the market is assumed. The analysis focuses on solar PV as well as

wind power (onshore as well as offshore) and uses both the net present value (NPV)

and the internal rate of return (IRR) as indicators to compare the profitability between

technologies and countries.

We show that investments in the considered technologies are not homogeneously prof-

itable across Europe. Our results reveal four categories of countries. The first category

includes a number of countries in Scandinavia and other parts of Northern or Western

Europe where wind onshore has a rather high IRR, while the IRR of solar PV is low.

The second category consists of a group of countries in the South-Eastern part of Central

Europe (e.g., the Czech Republic, Slovakia, Hungary and Bulgaria) where solar PV has

a rather high IRR, whereas wind onshore investments achieve very low IRRs. The third

category includes countries in Central Europe (e.g., Luxembourg, Lithuania and Slovenia)

where neither solar PV nor wind onshore achieve particularly high IRRs. Finally, the

fourth category consists of countries in Southern Europe with coastal access (e.g., Portu-

gal, Greece and Cyprus) where the IRRs of both solar PV and wind onshore are rather

high. Wind offshore is not found to be profitable under our baseline assumptions.

Country-specific risks also play a role in determining the profitability of the investments

through the cost of capital. The NPVs calculated for wind onshore projects (the only
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technology for which data on the cost of capital are available for most of the countries)

highlight that the profitability of investments is strongly linked to each country’s financial

market conditions. As a result, several countries in Southern and Eastern Europe with

IRRs for wind onshore in the upper half (above 6%) only have a marginally positive (or

even negative) NPV.

We also carried out a number of sensitivity analyses to explore the impact of varying

key factors, such as the fuel prices, technology costs and technology lifetimes. Our analysis

shows that a reduction in the lifetime of the projects, increased technology costs / less than

anticipated technology cost reductions by 2030 and lower fuel prices significantly reduce

the profitability of wind and solar investments. More specifically, we observe that the

downside risks and the upside potentials of the investments are distributed asymmetrically,

i.e. the downside risk of lower fuel prices and shorter technology lifetimes is larger than the

corresponding upside potential of higher fuel prices and longer lifetimes. In contrast, the

upside potential of decreased technology costs is larger than the downside risk of increased

costs. All these factors need to be taken into account when assessing if investments in

renewables will meet the 2030 targets in the absence of any financial supports by Member

States or what form and level of support may be required in different countries.

There are a number of messages that policy-makers can take away from this research.

First, our analysis shows that allowing for some form of trading renewable generation

between countries or providing some other mechanism for joint target achievement / co-

operation between European countries (as opposed to national targets that have to be met

nationally only) can be expected to achieve the overall targets at lower costs. Comparing

the 2030 target shares (Figure 1) and profitabilities (Figure 2) reveals that some countries

have high RES-E targets while the profitability is rather moderate or low and vice versa.

This suggests that either financial support payments will be required (ultimately leading

to higher costs to consumers) to meet the targets in these countries or the targets may not

be met. Trading of renewable generation between countries can resolve both problems.

Should countries, for whatever reason, wish to achieve certain technology-specific national

targets, our analysis provides quantitative support in determining which technologies need

support in which countries. Moreover, our analysis shows that in most countries at least

one technology (wind onshore or solar PV) achieve reasonable IRRs by 2030 even in ab-

sence of any financial support payments. Second, our analyses provide insights for policy

makers as to how sensitive a successful RES deployment and target achievement are to

29



uncertainties related to different factors. For technology developers, these analyses can

be used to derive targets in relation to technology cost reductions and lifetimes. Third,

our results show that in quite a few countries, wind onshore achieves higher IRRs than

solar PV, and definitively higher than those of wind offshore. Beyond these economic

considerations, however, the public acceptance of energy infrastructure investments is a

prerequisite for a successful deployment of renewables, which has been shown to be higher

for solar PV and wind offshore compared to wind onshore in many cases as discussed

in section 4. It is therefore crucial for policy makers to have an open and transparent

discourse about the tradeoff people make between consumer costs (depending, amongst

others, on the profitability of investments) and acceptance related to different renewable

technologies. The analyses presented in this paper provide an important contribution to

understanding the investment economic side of this tradeoff. Fourth, RES deployment

alone will not guarantee an effective reduction of CO2 emissions. If accompanied by an

appropriate carbon price (floor), however, renewables would unfold their full power in

mitigating carbon emissions.
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Appendix

Table 4: Conventional capacities installed (2030)

CCGT fleet Coal fleet Nuclear fleet OCGT fleet Oil fleet

AT 2338 778 0 260 423
BE 9298 16 0 1033 215
BG 938 3391 1920 104 2
CH 636 0 1200 144 0
CY 462 0 0 51 930
CZ 1526 8797 4006 170 64
DE 22560 36775 0 2507 1248
DK 899 1472 0 100 217
EE 214 1408 0 24 0
ES 25106 3968 7399 2790 2952
FI 2818 1844 3398 313 607
FR 7000 0 59493 778 1679
GR 4264 2845 0 474 733
HR 1050 658 0 117 107
HU 2226 396 4482 247 5
IE 2848 842 0 316 173
IT 37497 5098 0 4166 2332
LT 1215 0 1117 135 0
LU 614 0 0 68 4
LV 982 21 0 109 15
MT 641 0 0 71 144
NI 875 0 0 97 307
NL 10562 4429 485 1174 66
NO 700 0 0 215 45
PL 4494 20704 0 499 155
PT 3931 0 0 437 691
RO 3559 1909 2828 395 676
SE 2840 128 6949 316 510
SI 364 632 700 40 16
SK 901 483 4020 100 84
UK 30470 501 13107 3386 860

Data are from PRIMES Reference Scenario, 2016
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