Combing novel methods for the selection of representative days to fasten the optimization of the European electricity system under climate uncertainty

Leonie Sara Plaga*, Valentin Bertsch, Ruhr-University Bochum, Germany

Climate change influence on electricity systems

Based on climate projections from euro-cordex [1]

Case study

European electricity sector

- Impacts on Demand Hydro power Thermal power Wind power - Solar power
- Use of multiple climate models, RCP scenarios and years \rightarrow large amount of input data, exceeds computational resources \rightarrow reduction of input data necessary

Choice of representative days with new method obpc

> Combination of two methods, **o**ptimization result **b**ased clustering [2] and **p**riority **c**lustering [3]

1. Divide time series in time periods of 24 hours length 2. Run individual optimization for each time period.

- Investment and scheduling optimized with model backbone [4]
- No fossil fuels

Results

Investment in solar and wind power, batteries and hydrogen

Established methods for comparison

New method obpc with varying number of important days

very important Important not important

- 3. Assign "very important" to the *vid* days with highest total system costs and "important" to the *id* days with the next highest total system costs.
- 4. Merge the two neighbouring days with the lowest Euclidean distance between their investment decisions into one cluster.

Example results	Day 1	Day 2	Day 3	Day 4	Day 5
Invested capacity Tech. 1	10	5.5	5	7	12
Invested capacity Tech. 2	3	7	8	5	0
	Lowest Euclidean distance				

5. Calculate cluster centre based on importance:

Same importance: cluster centre = average of clustered

Using investment decisions for clustering decreases error in investment decisions, but worthens system cost

days

- Different importance: cluster centre = more important day
- Two very important clusters cannot be merged
- 6. Replace the clustered days with the cluster centre. 7. If desired number of representative days is reached: finish, else: go back to step 4.

accuracy

days.

- Assigning importance to days based on the system costs increases system costs accuracy, while only minorly decreasing investment accuracy
- Possibility to choose, which results shall be most accurate
- Calculation time decreases from 96 hours (for full 1825 days) up to 1 hour (for 45 representative days)

References

D. Jacob et al., "EURO-CORDEX: new high-resolution climate change projections for European impact research," Reg *Environ Change*, vol. 14, no. 2, pp. 563–578, 2014, doi: 10.1007/s10113-013-0499-2.

M. Sun, F. Teng, X. Zhang, G. Strbac, and D. Pudjianto, "Data-Driven Representative Day Selection for Investment Decisions: A Cost-Oriented Approach," IEEE Trans. Power Syst., vol. 34, no. 4, pp. 2925–2936, 2019, doi: 10.1109/TPWRS.2019.2892619.

A. Garcia-Cerezo, R. Garcia-Bertrand, and L. Baringo, "Priority Chronological Time-Period Clustering for Generation and [3] Transmission Expansion Planning Problems With Long-Term Dynamics," IEEE Trans. Power Syst., vol. 37, no. 6, pp. 4325–4339, 2022, doi: 10.1109/TPWRS.2022.3151062.

N. Helistö et al., "Backbone—An Adaptable Energy Systems Modelling Framework," Energies, vol. 12, no. 17, p. 3388, 2019, doi: 10.3390/en12173388.

