

Chair of

EE Energy Economics

Energy Systems &

RUHR-UNIVERSITÄT BOCHUM

ROBUST PLANNING OF A
EUROPEAN ENERGY SYSTEM
UNDER CLIMATE UNCERTAINTY
USING IMPORTANCE SUBSAMPLING

OR Karlsruhe 2022, Leonie Sara Plaga, Valentin Bertsch

Overview

- Motivation
- Description of case study
- 3 Importance Subsampling
- 4 Conclusion and outlook

Overview

- **Motivation**
- Description of case study
- 3 Importance Subsampling
- 4 Conclusion and outlook

- Climate change impacts already visible
- Energy systems depend on climate variables
- Climate projections are highly uncertain
- Many different models for many different years

European average temperature anomaly

Source: https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-10/assessment

- Climate change impacts already visible
- Energy systems depend on climate variables
- Climate projections are highly uncertain
- Many different models for many different years

- How can one incorporate the different projections into energy system planning?
- How can we reduce the input data to incorporate large numbers of years and models?

- How can one incorporate the different projections into energy system planning?
- How can we reduce the input data to incorporate large numbers of years and models?
- → Importance Subsampling

Overview

- My PhD Project
- Description of case study
- 3 Importance Subsampling
- 4 Conclusion and outlook

Description of case study

Overview

- Optimization of the European electricity sector for target year 2050
- No coal, oil or gas power plants
- Investment in nuclear power, wind, PV, batteries and hydrogen storage

Description of case study

Data and software

- Analysis in energy system model backbone¹
- Most power system data from pypsa-eur²
- Climate projections from Euro-Cordex
 - >5 different climate models
 - All years from 2006 to 2100

¹ Helistö et. al, 2019, doi.org/10.3390/en12173388

² Hörsch et. al, 2018, doi.org/10.1016/j.esr.2018.08.012

Overview

- Motivation
- Description of case study
- **3** Importance Subsampling
- 4 Conclusion and outlook

Original Method

- Introduced by Hilbers et. al (2019)*
- Aim: represent a large dataset with a small number of timesteps

* 10.1016/j.apenergy.2019.04.110

Original Method

- Methodology:
 - 1. Randomly sample *N* timesteps from dataset.
 - 2. Estimate capacity investments based on these datasets.

* 10.1016/j.apenergy.2019.04.110

Original Method

- Methodology:
 - 1. Randomly sample *N* timesteps from dataset.
 - 2. Estimate capacity investments based on these datasets.
 - Estimate importance of each dataset based on capacity investment 1.
 - 4. Construct a dataset of length N consisting of N_i important timesteps and N_r random timesteps.

Original Method

- Methodology:
 - 1. Randomly sample *N* timesteps from dataset.
 - 2. Estimate capacity investments based on these datasets.
 - 3. Estimate importance of each dataset based on capacity investment 1.
 - 4. Construct a dataset of length N consisting of N_i important timesteps and N_r random timesteps.
 - 5. Estimate capacity investment based on this dataset.

* 10.1016/j.apenergy.2019.04.110

* 10.1016/j.apenergy.2019.04.110

Adaptions for our model

- Length of subsamples at least 24 hours → 1 week (168 h)
- 1 year of data
- N = 6 and $N_i = 2$

Results

Results

Adaptions for our model

- Length of subsamples at least 24 hours → 1 week (168 h)
- 1 year of data
- N = 6 and $N_i = 2$
- Is it important to keep the temporal order of the subsamples?

Results

Results

Adaptions for our model

- Length of subsamples at least 24 hours → 1 week (168 h)
- 1 year of data
- N = 6 and $N_i = 2$
- Is it important to keep the temporal order of the subsamples?
- What influence has the length of the subsample?
 - Length: 24 h
 - N = 42 and $N_i = 14$
 - Same total length as weekly dataset

Results

Results

Adaptions for our model

- Deviations still high
- Improve keeping temporal order of timesteps
- Cluster all subsamples into clusters of variable length
- Choose length of clusters aiming to minimize the maximal difference from cluster average

Adaptions for our model

- Deviations still high
- Improve keeping temporal order of timesteps
- Cluster all subsamples into clusters of variable length
- Choose length of clusters aiming to minimize the maximal difference from cluster average

Results after clustering

Results after clustering

Overview

- Motivation
- Description of case study
- 3 Importance Subsampling
- 4 Conclusion and outlook

Conclusion and outlook

Conclusion

- Adaption of importance subsampling for more complicated systems → challenging
- Original method show differences in invest decisions especially for storages
- Choice of appropriate length for subsample necessary
- Clustering all timesteps based on their importance enhances results, but:
 - Leads to higher computational times
 - Deviations still quite high

Conclusion and outlook

Outlook

- Combine daily subsamples with cluster algorithms
- Compare importance subsampling results to other sampling methods
- Use reduced dataset as input in robust optimization

Thank you for your attention!

CONTACT

Leonie Plaga Ruhr-Universität Bochum Chair of Energy Systems & Energy Economics Universitätsstr. 150

44801 Bochum, Germany Phone: +49 234 32 **26849**

plaga@ee.rub.de | www.ee.rub.de

- Demand
- Hydro power
- Wind power
- Solar power
- Efficiency of thermal power plants

- Demand
 - Temperature influences heating and cooling demand
 - Country-specific regression

- Hydro power
 - River-runoff determines production
 - Site-specific evaluation very costly
 - Europe-wide regression
 - Estimating country-specific hydro production based on European trend

- Hydro power
 - River-runoff determines production
 - Site-specific evaluation very costly
 - Europe-wide regression
 - Estimating country-specific hydro production based on European trend

- Wind power
 - Interpolate wind speed to hub height
 - Use standardized production functions
- Solar power
 - Output depends on solar irradiation
 - Rising temperature decreases cell efficiency
 - Temperature of cell rises with outside temperature and irradiation

- Efficiency of thermal power plants
 - Cooling system is depending on temperature
 - Once-through cooling more vulnerable than closed-loop cooling
 - In this study: only closed-loop

Influence of climate variables on energy systems

- Wind power
 - Climate models report wind speeds
 - Interpolate to hub height:

$$v(h) = v(h_0) \cdot \left(\frac{h}{h_0}\right)^{1/7}$$

Calculate capacity factor:

$$c_{\rm f} = \begin{cases} 0, & v < v_{\rm in} \\ \frac{v^3 - v_{\rm in}^3}{v_{\rm r}^3 - v_{\rm in}^3}, & v_{\rm in} \le v < v_{\rm r} \\ 1, & v_{\rm r} \le v < v_{\rm out} \\ 0, & v > v_{\rm out} \end{cases}$$

Influence of climate variables on energy systems

- Solar power
 - Rising temperature decreases cell efficiency:

$$\eta = \eta_{\rm STC} (1 - \beta (T_{\rm cell} - T_{\rm STC}))$$

Temperature of cell rises with outside temperature and irradiation:

$$T_{\text{cell}} = T_{\text{am}} + c \cdot G$$

- Efficiency of thermal power plants
 - Cooling system is depending on temperature
 - Once-through cooling more vulnerable than closed-loop cooling
 - In this study, only closed-loop:

$$\eta = \begin{cases} \eta_0, & T \le T_{\text{health}} \\ \eta_0 (1 - \rho (T - T_{\text{health}})), & T > T_{\text{health}} \end{cases}$$

