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Knapsack problem

Given:

• set of items S = {s1, . . . , sn}
• value function v : S → Z+

• weight function w : S → Z+

• knapsack capacity W ∈ Z+
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• value function v : S → Z+

• weight function w : S → Z+
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Task: Find a feasible subset S∗ ⊆ S s.t. w(S∗) ≤ W and v(S∗)
maximal.
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• weight function w : S → Z+

• knapsack capacity W ∈ Z+

�

Task: Find a feasible subset S∗ ⊆ S s.t. w(S∗) ≤ W and v(S∗)
maximal.

!

Facts:
• NP-hard

• pseudo-polynomial time algorithm
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weight: 3kg importance: low
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Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika Knapsack problem with qualitative benefits 2020-10-09 5



Introduction Problem Greedy algorithms Exact algorithm Conclusion

Related literature

Knapsack extensions

• Fuzzy approaches

• Kasperski, A., & Kulej, M. (2007). The 0-1 knapsack problem with fuzzy data. Fuzzy Optimization and Decision
Making, 6(2), 163-172.

• Lin, F. T., & Yao, J. S. (2001). Using fuzzy numbers in knapsack problems. European Journal of Operational
Research, 135(1), 158-176.

• . . .

æå

• Multiobjective approaches and applications

• Bazgan, C., Hugot, H., & Vanderpooten, D. (2009). Solving efficiently the 0–1 multi-objective knapsack problem.
Computers & Operations Research, 36(1), 260-279.

• Saen, R. F. (2006). A decision model for technology selection in the existence of both cardinal and ordinal data.
Applied Mathematics and computation, 181(2), 1600-1608.

• Keeney, R. L., & McDaniels, T. L. (1999). Identifying and structuring values to guide integrated resource planning at
BC Gas. Operations Research, 47(5), 651-662.

• . . .

æå
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Setup

Given:

• set of items S = {s1, . . . , sn}

• set of qualitative levels L = {`1, . . . , `k} with `i ≺ `i+1

• k is a fixed parameter

• rank function r : S → L
• weight function w : S → Z+

• capacity W ∈ Z+

�
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Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika Knapsack problem with qualitative benefits 2020-10-09 6



Introduction Problem Greedy algorithms Exact algorithm Conclusion

Setup

Given:

• set of items S = {s1, . . . , sn}
• set of qualitative levels L = {`1, . . . , `k} with `i ≺ `i+1

• k is a fixed parameter

• rank function r : S → L
• weight function w : S → Z+

• capacity W ∈ Z+

�

Task: Find a feasible subset S∗ ⊆ S s.t. w(S∗) ≤ W and r(S∗) “maxi-
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Definitions I

• v : L → Q+ numerical representation w.r.t. r : S → L if

r(s1) � r(s2)⇔ v(r(s1)) > v(r(s2)), for all s1, s2 ∈ S and

r(s1) ∼ r(s2)⇔ v(r(s1)) = v(r(s2)), for all s1, s2 ∈ S

• Vr : set of all numerical representations w.r.t. r

Numerical representation
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• Vr : set of all numerical representations w.r.t. r

Numerical representation

high

�

medium

�

low

v(high) > v(medium) > v(low)
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Definitions I

• gi : 2S → Z+ with

gi (S) = |{s ∈ S | r(s) = `i}| for i = 1, . . . , k

• rank cardinality vector: g(S) = (g1(S), . . . , gk(S))>

• value of S ⊆ S: v(S) = `v · g(S), `v = (v(`1), . . . , v(`k))

Rank cardinality function

Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika Knapsack problem with qualitative benefits 2020-10-09 7



Introduction Problem Greedy algorithms Exact algorithm Conclusion

Definitions I

• gi : 2S → Z+ with

gi (S) = |{s ∈ S | r(s) = `i}| for i = 1, . . . , k

• rank cardinality vector: g(S) = (g1(S), . . . , gk(S))>

• value of S ⊆ S: v(S) = `v · g(S), `v = (v(`1), . . . , v(`k))

Rank cardinality function
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medium high low medium
v(medium) = 2 v(high) = 3 v(low) = 1 v(medium) = 2

v(S) = 1 · 1 + 2 · 2 + 3 · 1 = 8
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Does it make sense?
4kg

importance: medium
weight: 2kg

importance: high
weight: 3kg importance: low

weight: 1kg

importance: medium
weight: 2kg
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Does it make sense?
4kg

v2(medium) = 3
weight: 2kg

v2(high) = 4
weight: 3kg v2(low) = 1

weight: 1kg

v2(medium) = 3
weight: 2kg
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Does it make sense?
4kg

v2(medium) = 3
weight: 2kg

v2(high) = 4
weight: 3kg v2(low) = 1

weight: 1kg

v2(medium) = 3
weight: 2kg
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Efficiency & Dominance

• S1 � S2 iff v(S1) ≥ v(S2) for all v ∈ Vr
• S1 � S2 iff S1 � S2 and ∃v∗ ∈ Vr s.t. v∗(S1) > v∗(S2)

• S∗ efficient, if @S with S � S∗

• g(S∗) non-dominated rank cardinality vector

Efficiency & Dominance
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v(medium) = u v(high) = v

S1
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S2
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Efficiency & Dominance

medium high low medium

v(medium) = u v(high) = v

S1

v(low) = t v(medium) = u

S2

We know: v > u > t

v(S1)= u + v > t + u = v(S2)
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Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika Knapsack problem with qualitative benefits 2020-10-09 13



Introduction Problem Greedy algorithms Exact algorithm Conclusion

Greedy algorithm II

Greedy algorithm w.r.t. w

• Sort items w -lexicographically

• pack items as long as they fit into the knapsack

3Algorithm
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Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika Knapsack problem with qualitative benefits 2020-10-09 14



Introduction Problem Greedy algorithms Exact algorithm Conclusion

Dynamic programming

The algorithm correctly computes the set of non-dominated rank cardi-
nality vectors.

ÒTheorem
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Dynamic programming

The algorithm correctly computes the set of non-dominated rank cardi-
nality vectors.

ÒTheorem

The number of labels in Li,x is polynomially bounded by O(ik).

ÒTheorem

The algorithm runs in O(n2k+1W ).

ÒTheorem
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Keep in mind

• extension of the classical knapsack problem using qualitative
benefits

• check for dominance without consideration of numerical
representations possible

• single non-dominated points can efficiently be found by greedy
algorithms

• all non-dominated points can be found in pseudopolynomial time

-
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Details: Schäfer, L. E., Dietz, T., Barbati, M., Figueira, J. R., Greco, S., & Ruzika, S.
(2020). The binary knapsack problem with qualitative levels. European Journal of
Operational Research.
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