

The $\{0, 1\}$ -knapsack problem with qualitative benefits

Bundesministerium für Bildung und Forschung

Grant No. 13N14561

L. Schäfer, T. Dietz, M. Barbati, S. Greco, J. Figueira, S. Ruzika

AG Optimization TU Kaiserslautern

2020-10-09

Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika

 Introduction
 Problem
 Greedy algorithms
 Exact algorithm
 Conclusion

 •••••
 •••••
 •••••
 •••••
 •••••
 •••••

Knapsack problem

Knapsack problem

value: 200€ weight: 2kg

value: 70€ weight: 2kg

value: 250€ weight: 3kg

value: 40€ weight: 1kg

Knapsack problem

value: 250€ weight: 3kg

value: 40€ weight: 1kg

Knapsack problem

- set of items $\mathcal{S} = \{s_1, \ldots, s_n\}$
- value function $v:\mathcal{S}
 ightarrow \mathbb{Z}_+$
- weight function $w:\mathcal{S}
 ightarrow\mathbb{Z}_+$
- knapsack capacity $W \in \mathbb{Z}_+$

Knapsack problem

Given:

- set of items $S = \{s_1, \ldots, s_n\}$
- value function $v: \mathcal{S} \to \mathbb{Z}_+$
- weight function $w: \mathcal{S} \to \mathbb{Z}_+$
- knapsack capacity $W \in \mathbb{Z}_+$

Task: Find a feasible subset $S^* \subseteq S$ s.t. $w(S^*) \leq W$ and $v(S^*)$ maximal.

Knapsack problem

Given:

- set of items $S = \{s_1, \ldots, s_n\}$
- value function $v:\mathcal{S}
 ightarrow \mathbb{Z}_+$
- weight function $w: \mathcal{S} \to \mathbb{Z}_+$
- knapsack capacity $W \in \mathbb{Z}_+$

Facts:

- \mathcal{NP} -hard
- pseudo-polynomial time algorithm

Knapsack problem with qualitative benefits

Knapsack problem with qualitative benefits

Knapsack problem with qualitative benefits

importance: medium weight: 2kg

importance: medium weight: 2kg

importance: high weight: 3kg

importance: low weight: 1kg

Knapsack problem with qualitative benefits

importance: medium weight: 2kg

importance: medium weight: 2kg

importance: high weight: 3kg

importance: low weight: 1kg

Knapsack problem with qualitative benefits

importance: medium weight: 2kg

importance: medium weight: 2kg

importance: high weight: 3kg

importance: low weight: 1kg

Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika

Knapsack problem

- Morabito, R., & Garcia, V. (1998). The cutting stock problem in a hardboard industry: A case study. Computers & Operations Research, 25(6), 469-485.
- Naldi, M., Nicosia, G., Pacifici, A., Pferschy, U., & Leder, B. (2016, November). A simulation study of fairness-profit trade-off in project selection based on HHI and knapsack models. In 2016 European Modelling Symposium (EMS) (pp. 85-90). IEEE.
- Choi, S., Park, S., & Kim, H. M. (2011). The Application of the 0-1 Knapsack problem to the load-shedding problem in microgrid operation. In Control and automation, and energy system engineering (pp. 227-234). Springer, Berlin, Heidelberg.

• ...

Knapsack extensions

Knapsack extensions

Fuzzy approaches

Knapsack extensions

Fuzzy approaches

 Kasperski, A., & Kulej, M. (2007). The 0-1 knapsack problem with fuzzy data. Fuzzy Optimization and Decision Making, 6(2), 163-172.

 Lin, F. T., & Yao, J. S. (2001). Using fuzzy numbers in knapsack problems. European Journal of Operational Research, 135(1), 158-176.

• ...

Multiobjective approaches and applications

Given:

• set of items $S = \{s_1, \ldots, s_n\}$

Given:

• set of items $S = \{s_1, \ldots, s_n\}$

- set of items $\mathcal{S} = \{s_1, \ldots, s_n\}$
- set of qualitative levels $\mathcal{L} = \{\ell_1, \dots, \ell_k\}$ with $\ell_i \prec \ell_{i+1}$

- set of items $\mathcal{S} = \{s_1, \ldots, s_n\}$
- set of qualitative levels $\mathcal{L} = \{\ell_1, \dots, \ell_k\}$ with $\ell_i \prec \ell_{i+1}$
- k is a fixed parameter

- set of items $\mathcal{S} = \{s_1, \ldots, s_n\}$
- set of qualitative levels $\mathcal{L} = \{\ell_1, \dots, \ell_k\}$ with $\ell_i \prec \ell_{i+1}$
- k is a fixed parameter
- rank function $r: \mathcal{S} \to \mathcal{L}$

- set of items $\mathcal{S} = \{s_1, \ldots, s_n\}$
- set of qualitative levels $\mathcal{L} = \{\ell_1, \ldots, \ell_k\}$ with $\ell_i \prec \ell_{i+1}$
- k is a fixed parameter
- rank function $r: \mathcal{S} \to \mathcal{L}$

- set of items $\mathcal{S} = \{s_1, \ldots, s_n\}$
- set of qualitative levels $\mathcal{L} = \{\ell_1, \ldots, \ell_k\}$ with $\ell_i \prec \ell_{i+1}$
- k is a fixed parameter
- rank function $r: \mathcal{S} \to \mathcal{L}$
- weight function $w: \mathcal{S} \to \mathbb{Z}_+$

- set of items $\mathcal{S} = \{s_1, \ldots, s_n\}$
- set of qualitative levels $\mathcal{L} = \{\ell_1, \ldots, \ell_k\}$ with $\ell_i \prec \ell_{i+1}$
- k is a fixed parameter
- rank function $r: \mathcal{S} \to \mathcal{L}$
- weight function $w: \mathcal{S} \to \mathbb{Z}_+$

medium	high	low	medium
2kg	3kg	1kg	2kg

- set of items $\mathcal{S} = \{s_1, \ldots, s_n\}$
- set of qualitative levels $\mathcal{L} = \{\ell_1, \ldots, \ell_k\}$ with $\ell_i \prec \ell_{i+1}$
- k is a fixed parameter
- rank function $r: \mathcal{S} \to \mathcal{L}$
- weight function $w: \mathcal{S} \to \mathbb{Z}_+$
- capacity $W \in \mathbb{Z}_+$

medium	high	low	medium
2kg	3kg	1kg	2kg
	and the second second		

Given:

- set of items $\mathcal{S} = \{s_1, \ldots, s_n\}$
- set of qualitative levels $\mathcal{L} = \{\ell_1, \ldots, \ell_k\}$ with $\ell_i \prec \ell_{i+1}$
- k is a fixed parameter
- rank function $r: \mathcal{S} \to \mathcal{L}$
- weight function $w: \mathcal{S} \to \mathbb{Z}_+$
- capacity $W \in \mathbb{Z}_+$

Task: Find a feasible subset $S^* \subseteq S$ s.t. $w(S^*) \leq W$ and $r(S^*)$ "maximal".

Given:

- set of items $\mathcal{S} = \{s_1, \ldots, s_n\}$
- set of qualitative levels $\mathcal{L} = \{\ell_1, \ldots, \ell_k\}$ with $\ell_i \prec \ell_{i+1}$
- k is a fixed parameter
- rank function $r: \mathcal{S} \to \mathcal{L}$
- weight function $w: \mathcal{S} \to \mathbb{Z}_+$
- capacity $W \in \mathbb{Z}_+$

Task: Find a feasible subset $S^* \subseteq S$ s.t. $w(S^*) \leq W$ and $r(S^*)$ "maximal".

Numerical representation

• $v : \mathcal{L} \to \mathbb{Q}_+$ numerical representation w.r.t. $r : \mathcal{S} \to \mathcal{L}$ if

 $r(s_1) \succ r(s_2) \Leftrightarrow v(r(s_1)) > v(r(s_2)), \text{ for all } s_1, s_2 \in S \text{ and}$ $r(s_1) \sim r(s_2) \Leftrightarrow v(r(s_1)) = v(r(s_2)), \text{ for all } s_1, s_2 \in S$

• V_r : set of all numerical representations w.r.t. r

Numerical representation

• $v : \mathcal{L} \to \mathbb{Q}_+$ numerical representation w.r.t. $r : \mathcal{S} \to \mathcal{L}$ if

$$r(s_1) \succ r(s_2) \Leftrightarrow v(r(s_1)) > v(r(s_2)), \text{ for all } s_1, s_2 \in S \text{ and}$$

 $r(s_1) \sim r(s_2) \Leftrightarrow v(r(s_1)) = v(r(s_2)), \text{ for all } s_1, s_2 \in S$

• V_r : set of all numerical representations w.r.t. r

Numerical representation

• $v: \mathcal{L} \to \mathbb{Q}_+$ numerical representation w.r.t. $r: \mathcal{S} \to \mathcal{L}$ if

$$r(s_1) \succ r(s_2) \Leftrightarrow v(r(s_1)) > v(r(s_2)), \text{ for all } s_1, s_2 \in S \text{ and}$$

 $r(s_1) \sim r(s_2) \Leftrightarrow v(r(s_1)) = v(r(s_2)), \text{ for all } s_1, s_2 \in S$

• V_r : set of all numerical representations w.r.t. r

Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika

Rank cardinality function

• $g_i: 2^{\mathcal{S}} \to \mathbb{Z}_+$ with

$$g_i(S) = |\{s \in S \mid r(s) = \ell_i\}|$$
 for $i = 1, \dots, k$

- rank cardinality vector: $g(S) = (g_1(S), \dots, g_k(S))^ op$
- value of $S \subseteq \mathcal{S}$: $v(S) = \ell_v \cdot g(S), \ \ell_v = (v(\ell_1), \dots, v(\ell_k))$

•
$$g_i: 2^{\mathcal{S}} \to \mathbb{Z}_+$$
 with

$$g_i(S) = |\{s \in S \mid r(s) = \ell_i\}|$$
 for $i = 1, \dots, k$

- rank cardinality vector: $g(S) = (g_1(S), \dots, g_k(S))^ op$
- value of $S \subseteq \mathcal{S}$: $v(S) = \ell_v \cdot g(S), \ \ell_v = (v(\ell_1), \dots, v(\ell_k))$

•
$$g_i: 2^{\mathcal{S}} \rightarrow \mathbb{Z}_+$$
 with

$$g_i(\mathcal{S}) = |\{ s \in \mathcal{S} \mid r(s) = \ell_i \}|$$
 for $i = 1, \dots, k$

- rank cardinality vector: $g(S) = (g_1(S), \dots, g_k(S))^ op$
- value of $S \subseteq \mathcal{S}$: $v(S) = \ell_v \cdot g(S), \ \ell_v = (v(\ell_1), \dots, v(\ell_k))$

•
$$g_i: 2^{\mathcal{S}} \rightarrow \mathbb{Z}_+$$
 with

$$g_i(\mathcal{S}) = |\{ s \in \mathcal{S} \mid r(s) = \ell_i \}|$$
 for $i = 1, \dots, k$

- rank cardinality vector: $g(S) = (g_1(S), \dots, g_k(S))^ op$
- value of $S \subseteq \mathcal{S}$: $v(S) = \ell_v \cdot g(S), \ \ell_v = (v(\ell_1), \dots, v(\ell_k))$

•
$$g_i: 2^{\mathcal{S}} \to \mathbb{Z}_+$$
 with

$$g_i(S) = |\{s \in S \mid r(s) = \ell_i\}|$$
 for $i = 1, \dots, k$

- rank cardinality vector: $g(S) = (g_1(S), \dots, g_k(S))^ op$
- value of $S \subseteq \mathcal{S}$: $v(S) = \ell_v \cdot g(S), \ \ell_v = (v(\ell_1), \dots, v(\ell_k))$

Rank cardinality function

•
$$g_i: 2^{\mathcal{S}} \rightarrow \mathbb{Z}_+$$
 with

$$g_i(S) = |\{s \in S \mid r(s) = \ell_i\}|$$
 for $i = 1, \dots, k$

- rank cardinality vector: $g(S) = (g_1(S), \dots, g_k(S))^ op$
- value of $S \subseteq \mathcal{S}$: $v(S) = \ell_v \cdot g(S), \ \ell_v = (v(\ell_1), \dots, v(\ell_k))$

Does it make sense?

importance: medium weight: 2kg

importance: medium weight: 2kg

importance: high weight: 3kg

importance: low weight: 1kg

Does it make sense?

 $v_1(medium) = 2$ weight: 2kg

 $v_1(medium) = 2$ weight: 2kg

 $v_1(high) = 4$ weight: 3kg

 $v_1(low) = 1$ weight: 1kg

Does it make sense?

 $v_1(\mathsf{low}) = 1$ weight: 1kg

Does it make sense?

 $v_2(medium) = 3$ weight: 2kg

 v_2 (medium) = 3 weight: 2kg

 $v_2(high) = 4$ weight: 3kg

 $v_2(low) = 1$ weight: 1kg

Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika

Does it make sense?

 v_2 (medium) = 3 weight: 2kg

 $v_2(\text{medium}) = 3$ weight: 2kg

 $v_2(high) = 4$

Efficiency & Dominance

Efficiency & Dominance

Efficiency & Dominance

Efficiency & Dominance

Efficiency & Dominance

- $S_1 \succeq S_2$ iff $v(S_1) \ge v(S_2)$ for all $v \in \mathcal{V}_r$
- $S_1 \succ S_2$ iff $S_1 \succeq S_2$ and $\exists v^* \in \mathcal{V}_r$ s.t. $v^*(S_1) > v^*(S_2)$

- $S_1 \succeq S_2$ iff $v(S_1) \ge v(S_2)$ for all $v \in \mathcal{V}_r$
- $S_1 \succ S_2$ iff $S_1 \succeq S_2$ and $\exists v^* \in \mathcal{V}_r$ s.t. $v^*(S_1) > v^*(S_2)$
- S^* efficient, if $\nexists S$ with $S \succ S^*$

- $S_1 \succeq S_2$ iff $v(S_1) \ge v(S_2)$ for all $v \in \mathcal{V}_r$
- $S_1 \succ S_2$ iff $S_1 \succeq S_2$ and $\exists v^* \in \mathcal{V}_r$ s.t. $v^*(S_1) > v^*(S_2)$
- S^* efficient, if $\nexists S$ with $S \succ S^*$
- $g(S^*)$ non-dominated rank cardinality vector

Efficiency & Dominance

- $S_1 \succeq S_2$ iff $v(S_1) \ge v(S_2)$ for all $v \in \mathcal{V}_r$
- $S_1 \succ S_2$ iff $S_1 \succeq S_2$ and $\exists v^* \in \mathcal{V}_r$ s.t. $v^*(S_1) > v^*(S_2)$
- S^* efficient, if $\nexists S$ with $S \succ S^*$
- $g(S^*)$ non-dominated rank cardinality vector

Theorem \checkmark The dominance relation \succeq defined on the set of feasible subsets of S is a preorder.

Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika Knapsack problem with qualitative benefits

Consequences:

Consequences:

dominance can be checked in constant time

Consequences:

- dominance can be checked in constant time
- no need of numerical representations anymore

	Greedy algorithms		
	000		

r-lexicographical order

- Sort items in non-increasing manner w.r.t. r
- in case of ties, take the item with lower weight first

r-lexicographical order

- Sort items in non-increasing manner w.r.t. r
- in case of ties, take the item with lower weight first

r-lexicographical order

- Sort items in non-increasing manner w.r.t. r
- in case of ties, take the item with lower weight first

w-lexicographical order

- Sort items in non-decreasing manner w.r.t. w
- in case of ties, take the item with higher rank first

r-lexicographical order

- Sort items in non-increasing manner w.r.t. r
- in case of ties, take the item with lower weight first

w-lexicographical order

- Sort items in non-decreasing manner w.r.t. w
- in case of ties, take the item with higher rank first

Greedy algorithm I

Greedy algorithm w.r.t. r

Greedy algorithm I

Greedy algorithm w.r.t. r

 \mathbf{O}_{a}°

Greedy algorithm I

Greedy algorithm w.r.t. r

Algorithm

- Sort items *r*-lexicographically
- pack items as long as they fit into the knapsack

Greedy algorithm I

Greedy algorithm w.r.t. r

Greedy algorithm I

Greedy algorithm w.r.t. r

Remaining capacity: 4kg

0

Greedy algorithm I

Greedy algorithm w.r.t. r

- Sort items *r*-lexicographically
- pack items as long as they fit into the knapsack

Theorem \checkmark

Ċ.

Greedy algorithm I

- Sort items *r*-lexicographically
- pack items as long as they fit into the knapsack

0°

Greedy algorithm II

- Sort items w-lexicographically
- pack items as long as they fit into the knapsack

Greedy algorithm w.r.t. \mathbf{w}

Remaining capacity: 4kg

Greedy algorithm w.r.t. \boldsymbol{w}

Greedy algorithm w.r.t. \mathbf{w}

medium

Zng

hig 3ki

1kg

medium 2kg

4	Ø				
3	Ø				
2	Ø				
1	Ø				
0	Ø				
×i	0	1	2	3	4

medium

2kg

hig 3ki

1kg

Schäfer, Dietz, Barbati, Greco, Figueira, Ruzika

4	Ø				
3	Ø				
2	Ø				
1	Ø				
0	Ø	Ø			
×i	0	1	2	3	4

medium 2kg

hig 3kg

medium 2kg

hig 3kg

medium 2kg

hig 3kg

4	Ø				
3	Ø	$\{$			
2	Ø	{			
1	Ø	Ø			
0	Ø	Ø			
×	0	1	2	3	4

medium 2kg

hig 3kg

4	Ø	$\{$			
3	Ø	$\{$			
2	Ø	{			
1	Ø	Ø			
0	Ø	Ø			
×	0	1	2	3	4

medium 2kg

hig 3kg

4	Ø	$\{$			
3	Ø	$\{$			
2	Ø	[]			
1	Ø	Ø			
0	Ø	Ø	Ø		
×	0	1	2	3	4

medium 2kg

high 3kg

low 1kg

4	Ø	$\{$			
3	Ø	$\{$			
2	Ø	{100}			
1	Ø	Ø	Ø		
0	Ø	Ø	Ø		
×i	0	1	2	3	4

medium 2kg

high 3kg

4	Ø	$\{$			
3	Ø	$\{$			
2	Ø	{100}	$\{$		
1	Ø	Ø	Ø		
0	Ø	Ø	Ø		
×i	0	1	2	3	4

medium 2kg

high
3kg

4	Ø	{			
3	Ø	$\{$	{ 💻 }		
2	Ø	{	{		
1	Ø	Ø	Ø		
0	Ø	Ø	Ø		
×	0	1	2	3	4

medium 2kg

high 3kg

4	Ø	{	$\{\blacksquare\}$		
3	Ø	{	{ 💻 }		
2	Ø	{	{		
1	Ø	Ø	Ø		
0	Ø	Ø	Ø		
×	0	1	2	3	4

medium 2kg

high 3kg

1kg

4	Ø	{	$\{\blacksquare\}$		
3	Ø	{	{ 💻 }		
2	Ø	{	{		
1	Ø	Ø	Ø		
0	Ø	Ø	Ø	Ø	
×	0	1	2	3	4

medium 2kg

high 3kg

low 1kg

medium 2kg

4	Ø	{	$\{\blacksquare\}$		
3	Ø	$\{$	{ 💻 }		
2	Ø	{	{		
1	Ø	Ø	Ø	{\$	
0	Ø	Ø	Ø	Ø	
×	0	1	2	3	4

medium 2kg

high 3kg

low 1kg

4	Ø	$\{$	$\{\blacksquare\}$		
3	Ø	$\{$	{💻}		
2	Ø	{	{		
1	Ø	Ø	Ø	{\$	
0	Ø	Ø	Ø	Ø	
×i	0	1	2	3	4

medium 2kg

high 3kg

4	Ø	{	$\{\blacksquare\}$		
3	Ø	$\{$	{ 💻 }	{ऺ॑॑॑■}, {�ৈট	
2	Ø	{	{		
1	Ø	Ø	Ø	{\$	
0	Ø	Ø	Ø	Ø	
×	0	1	2	3	4

medium 2kg

high 3kg

low 1kg

4	Ø	$\{$	$\{\blacksquare\}$	{	
3	Ø	$\{$	{ 💻 }	{≞}, {∞™}	
2	Ø	{	{		
1	Ø	Ø	Ø	{\$	
0	Ø	Ø	Ø	Ø	
×	0	1	2	3	4

medium 2kg

high 3kg

low 1kg

4	Ø	{	$\{\blacksquare\}$	{■♥}	
3	Ø	{	{ 💻 }	{ऺ॑॑॑■}, {�ৈট	
2	Ø	{	{	{	
1	Ø	Ø	Ø	{\$	
0	Ø	Ø	Ø	Ø	Ø
×	0	1	2	3	4

medium 2kg

high 3kg

low 1kg

4	Ø	{	$\{\blacksquare\}$	{■♥}	
3	Ø	{	{ 💻 }	{≞}, {�≋	
2	Ø	{	{	{	
1	Ø	Ø	Ø	{\$	{\$
0	Ø	Ø	Ø	Ø	Ø
×	0	1	2	3	4

medium 2kg

high 3kg

low 1kg

4	Ø	{	{ 🔜 }	{	
3	Ø	{	{ 🔤 }	{≞}, {∞™}	
2	Ø	{	{		{100}, {
1	Ø	Ø	Ø	{\$	{\$
0	Ø	Ø	Ø	Ø	Ø
×	0	1	2	3	4

medium 2kg

high 3kg

4	Ø	$\{$	$\{\blacksquare\}$	{■♥}	
3	Ø	{	{ 🛄 }	{፟፟፟፟፟፟፟፟፟፟፟፟}, {�゚゚゚゚゚゚゙゙゙゙゙゙゙゚゚゚	$\{\blacksquare\}, \{\diamondsuit$
2	Ø	{	{	{	{wi}, {<
1	Ø	Ø	Ø	{ 🔷 }	{\$
0	Ø	Ø	Ø	Ø	Ø
×i	0	1	2	3	4

medium 2kg

high 3kg

low 1kg

4	Ø	{	$\{\blacksquare\}$	{■♥}	{▣∅}, {◙ं́́́
3	Ø	{	{ 🛄 }	{፟፟፟፟፟፟፟፟፟፟፟፟}, {�゚゚゚゚゚゚゙゙゙゙゙゙゚゚	{≞}, {♥₪}, {♥▲}
2	Ø	$\{$	{	{ I	{ IIII }, { 4
1	Ø	Ø	Ø	{🛷}}	{♥}
0	Ø	Ø	Ø	Ø	Ø
×	0	1	2	3	4

medium 2kg

high 3kg

low 1kg

The algorithm correctly computes the set of non-dominated rank cardinality vectors.

Introduction Problem Greedy algorithms Exact algorithm Conclusion

• extension of the classical knapsack problem using qualitative benefits

- extension of the classical knapsack problem using qualitative benefits
- check for dominance without consideration of numerical representations possible

- extension of the classical knapsack problem using qualitative benefits
- check for dominance without consideration of numerical representations possible
- single non-dominated points can efficiently be found by greedy algorithms

- extension of the classical knapsack problem using qualitative benefits
- check for dominance without consideration of numerical representations possible
- single non-dominated points can efficiently be found by greedy algorithms
- all non-dominated points can be found in pseudopolynomial time

- extension of the classical knapsack problem using qualitative benefits
- check for dominance without consideration of numerical representations possible
- single non-dominated points can efficiently be found by greedy algorithms
- all non-dominated points can be found in pseudopolynomial time

Details: Schäfer, L. E., Dietz, T., Barbati, M., Figueira, J. R., Greco, S., & Ruzika, S. (2020). The binary knapsack problem with qualitative levels. European Journal of Operational Research.

- extension of the classical knapsack problem using qualitative benefits
- check for dominance without consideration of numerical representations possible
- single non-dominated points can efficiently be found by greedy algorithms
- all non-dominated points can be found in pseudopolynomial time

Details: Schäfer, L. E., Dietz, T., Barbati, M., Figueira, J. R., Greco, S., & Ruzika, S. (2020). The binary knapsack problem with qualitative levels. European Journal of Operational Research.

🔽 luca.schaefer@mathematik.uni-kl.de