Planung der Wartungsmaßnahmen in Windparks

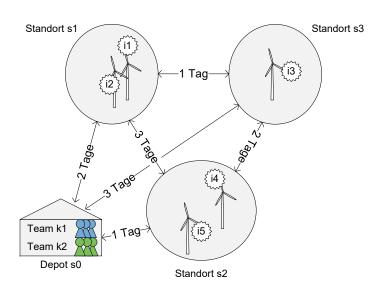
André Schnabel Carolin Kellenbrink Steffen Rickers

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft

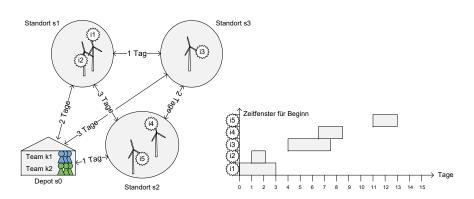
Online-Treffen der GOR Arbeitsgruppen Entscheidungstheorie und -praxis / OR im Umweltschutz / Projektmanagement und Scheduling

9. Oktober 2020

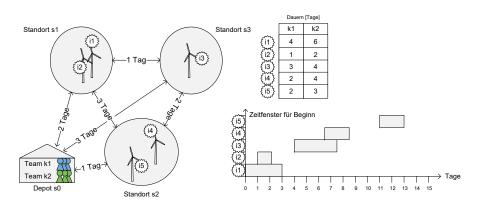
Gliederung

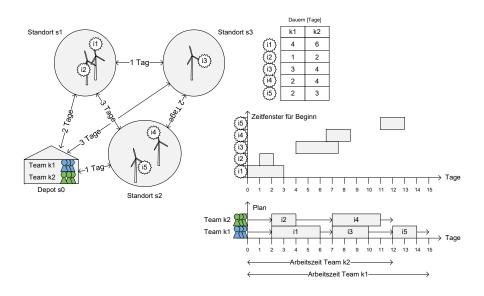

- Integrierte Touren- und Ablaufplanung für Windpark-Wartungsteams
- Formalisierung als gemischt-ganzzahliges Optimierungsmodell
- Nachbarschaftliches Suchverfahren
- Lösungsansatz basierend auf Spaltengenerierung
- Numerische Ergebnisse

Gliederung



- Integrierte Touren- und Ablaufplanung für Windpark-Wartungsteams
- Pormalisierung als gemischt-ganzzahliges Optimierungsmodell
- Nachbarschaftliches Suchverfahrer
- Lösungsansatz basierend auf Spaltengenerierung
- Numerische Ergebnisse





Literatur zur Wartungsplanung von WEA

- Routing und Scheduling für Offshore-Windfarms, Irawan u. a. (2017), Dai u. a. (2015), Stålhane u. a. (2015)
- Integriert mit Zustandsüberwachung und Fehlerdiagnose, Kovacs u. a. (2011)
- Risikobasierte Ausfallanalyse, Sinha und Steel (2015)
- Wetterberücksichtigung, Byon u. a. (2010)
- Finanzielle Bedeutung, Tautz-Weinert u. a. (2019)
- Text-Mining der Historie, Salo u. a. (2018)
- → Keine integrierte Touren- und Ablaufplanung mit unterschiedlich qualifizierten Teams und Zeitfenstern

Gliederung

- Integrierte Touren- und Ablaufplanung für Windpark-Wartungsteams
- Formalisierung als gemischt-ganzzahliges Optimierungsmodell
- Nachbarschaftliches Suchverfahrer
- Lösungsansatz basierend auf Spaltengenerierung
- Numerische Ergebnisse

Notation: Exogene Größen

Indizes und (geordnete) Mengen			
$t \in \mathcal{T}$	Perioden $\mathcal{T} = \{1, \dots, T\}$		
$i \in \mathcal{I}$	$MaBnahmen\ \mathcal{I} = \{1, \dots, I\}$		
$k \in \mathcal{K}$	Teams $\mathcal{K} = \{1, \dots, K\}$		
Parameter	Parameter		
$p_{i,k} \in \mathbb{N}$	Dauer von Maßnahme i für Team k		
$d_{i,i'} \in \mathbb{N}_0$	Fahrtdauer von i nach i'		
$\hat{d}_i \in \mathbb{N}_0$	Fahrtdauer von Depot zu Maßnahme i		
$EST_i \in \mathbb{N}$	Frühester Beginn von Maßnahme i		
$LST_i \in \mathbb{N}$	$T_i \in \mathbb{N}$ Spätester Beginn von Maßnahme i		
$sl_k \in \mathbb{R}_+$	Tagessatz von Team k		

Notation: Endogene Größen

Entscheidungsvariablen

Primäre Entscheidung

$$x_{k,i,t}$$

 $\begin{cases} 1, & \text{falls Team } k \text{ Maßnahme } i \text{ in Periode } t \text{ beginnt} \\ 0, & \text{andernfalls} \end{cases}$

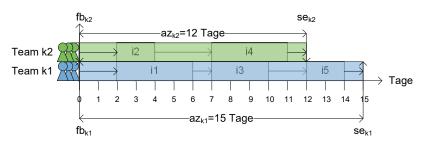
Abgeleitete Hilfsvariablen

 $se_k \in \mathbb{R}_+$ Späteste Beendigung einer Maßnahme von Team k $fb_k \in \mathbb{R}_+$ Frühester Beginn einer Maßnahme von Team k $az_k \in \mathbb{R}_+$ Gesamtarbeitszeit von Team k

 $\gamma_{i,i'}$

falls gleiches Team Maß. i vor Maß. i' beginnt andernfalls

Zielstellung: Kostenminimierung

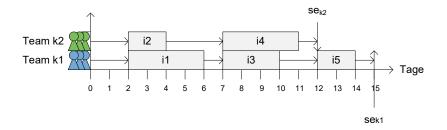

Minimiere: Personalkosten durch Arbeitszeiten az_k von Teams k mit heterogenen Qualifikationen und Tagessätzen sl_k

$$\min F = \sum_{k \in \mathcal{K}} sl_k \cdot az_k$$

NB 1: Gesamtarbeitszeit az_k eines Teams k: Differenz von spätestem Ende se_k und frühestem Beginn fb_k der Fahrt

$$az_k = se_k - fb_k$$

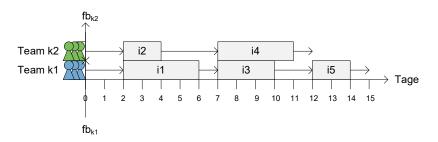
$$k \in \mathcal{K}$$



Entscheidungsmodell WP-WEA Frühester Beginn

NB 2: Berechne späteste Fahrtbeendigung se_k des Teams k im Plan $x_{k,i,t}$ Team fährt von letzter Maßnahme i (mit Dauer $p_{i,k}$) zurück zum Depot in \hat{d}_i Perioden

$$se_k \ge \sum_{t=EST_i}^{LST_i} x_{k,i,t} \cdot (t + p_{i,k} + \hat{d}_i)$$
 $k \in \mathcal{K}, i \in \mathcal{I}$

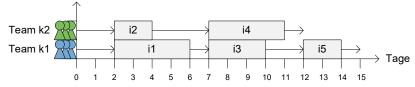


Entscheidungsmodell WP-WEA Spätestes Ende

NB 3: Berechne frühesten Fahrtbeginn fb_k des Teams k im Plan $x_{k,i,t}$ Team fährt vom Depot zu erster Maßnahme i in \hat{d}_i Perioden

$$fb_k \leq \sum_{t=EST_i}^{LST_i} x_{k,i,t} \cdot (t - \hat{d}_i) + (1 - \sum_{t=EST_i}^{LST_i} x_{k,i,t}) \cdot T \qquad k \in \mathcal{K}, i \in \mathcal{I}$$

Bearbeitungs- und Transferzeiten

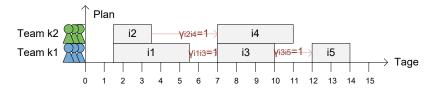

NB 4: Falls Ma $\bar{\text{S}}$ nahme i vor Ma $\hat{\text{S}}$ nahme i' vom gleichen Team k durchgeführt wird: Berücksichtige Bearbeitungszeit $p_{i,k}$ und minimale Transferzeit $d_{i,i'}$ von i nach i' in Plan $x_{k,i,t}$

$$\sum_{t=EST_i}^{LST_i} x_{k,i,t} \cdot (t + p_{i,k} + d_{i,i'})$$

$$\leq \sum_{t=EST_{i'}}^{LST_{i'}} x_{k,i',t} \cdot t + (1 - \gamma_{i,i'}) \cdot T \qquad k \in \mathcal{K}, i, i' \in \mathcal{I}, i \neq i'$$

Nebenbedingungen werden deaktiviert, falls $\gamma_{i,i'}=0$, d.h. i und i' von verschiedenen

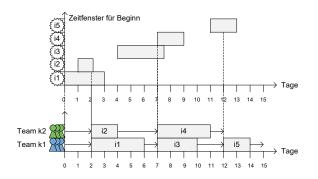
Teams durchgeführt werden oder in umgekehrter Reihenfolge



Hilfsvariable $\gamma_{i,i'}$ mit Planvariable $x_{k,i,t}$ synchronisieren

NB 5: Entweder $\gamma_{i,i'}$ oder $\gamma_{i',i}$ muss auf 1 gezwungen werden, wenn i und i' vom gleichen Team k in Plan $x_{k,i,t}$ durchgeführt werden

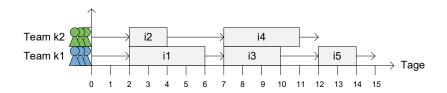
$$\begin{aligned} \gamma_{i,i'} + \gamma_{i',i} &\geq \sum_{t=EST_i}^{LST_i} x_{k,i,t} \\ &+ \sum_{t=EST_{i'}}^{LST_{i'}} x_{k,i',t} - 1 & k \in \mathcal{K}, i, i' \in \mathcal{I}, i \neq i' \end{aligned}$$



Alle Maßnahmen korrekt durchgeführt

NB 6: Jede Maßnahme i wird von genau einem Team k zu einem Zeitpunkt t innerhalb ihres Zeitfensters $\{EST_i,\dots,LST_i\}$ begonnen in Plan $x_{k,i,t}$

$$\sum_{k} \sum_{t=EST_i}^{LST_i} x_{k,i,t} = 1 \qquad i \in \mathcal{I}$$


Gliederung

- Integrierte Touren- und Ablaufplanung für Windpark-Wartungsteams
- Pormalisierung als gemischt-ganzzahliges Optimierungsmodell
- Nachbarschaftliches Suchverfahren
- Lösungsansatz basierend auf Spaltengenerierung
- Numerische Ergebnisse

Lösungsrepräsentation

- Betrachtung als integriertes Partitionierungs- und Sequenzierungsproblem, bspw. $l_1 = (1, 3, 5), l_2 = (2, 4)$
- Je Team disjunkte Teilsequenz der Maßnahmen

$$l_k = (i_1^k, i_2^k, ..., i_{\varphi}^k) \text{ mit } \varphi \leq I$$

Dekodierung über Planerzeugungsschema

Planerzeugungsschema

Erzeuge für jedes Team k einen Plan:

- ullet Initialisiere Teamzeit $t_k = \hat{d}_{i_1^k}$
- Für jede Maßnahme i_j^k mit Nachfolger $i_j^{k\prime}$ in der Liste l_k :
 - Setze $t_k = \max(t_k, EST_{i_j^k})$
 - Falls $t_k > LST_{i_i^k}$: Abbruch, $az_k = K \cdot T$
 - Setze $ST_{i_i^k} = t_k$
 - Aktualisiere $t_k = t_k + p_{i_j^k,k} + d_{i_j^k,i_j^{k'}}$
- Ordne alle Maßnahmen (außer späteste!) rechtsbündig an

Gliederung

- Integrierte Touren- und Ablaufplanung für Windpark-Wartungsteams
- Pormalisierung als gemischt-ganzzahliges Optimierungsmodell
- Nachbarschaftliches Suchverfahrer
- Lösungsansatz basierend auf Spaltengenerierung
- Numerische Ergebnisse

Zusatznotation für Spaltengenerierung

Indizes und (geordnete) Mengen

$$n \in \mathcal{N}$$
 Potenzielle Pläne $\mathcal{N} = \{1, \dots, N\}$ $\mathcal{B} \subseteq \mathcal{K} \times \mathcal{N}$ Bekannte Pläne

Parameter

$ina_{k,n,i}$	$\int 1$, Team k in Plan n Maßnahme i durchführt		
	0, andernfalls		
$nc_{k,n} \in \mathbb{R}_+$	Kosten von Plan n des Teams k		

Entscheidungsvariablen

$\alpha_{k,n}$	j i, ians i ian ii ream ii gewant
	iggl) 0, andernfalls
$\pi_i \in \mathbb{R}$	Dualvariable von Abdeckungsrestriktion für Maß. $\it i$
$\sigma_k \in \mathbb{R}$	Dualvariable von Team-Plan-Restriktion k

falls Plan n für Team k gewählt

Masterproblem (MP)

Set Covering

Minimiere Kosten für durchgeführte Pläne

$$\min F = \sum_{(k,n)\in\mathcal{B}} nc_{k,n} \cdot \alpha_{k,n}$$

Jede Maßnahme von mindestens einem durchgeführten Plan erfasst

$$\sum_{(k,n)\in\mathcal{B}} ina_{k,n,i} \cdot \alpha_{k,n} \ge 1 \qquad \Rightarrow \pi_i \qquad i \in \mathcal{I}$$

Maximal ein Plan pro Team

$$\sum_{(k,n)\in\mathcal{B}} \alpha_{k,n} \le 1 \qquad \Rightarrow \sigma_k \qquad \qquad k \in \mathcal{K}$$

Dummy-Pläne für das Masterproblem

- Erster Plan für jedes Team k:
 Team k übernimmt alle Maßnahmen i
 - Kosten $nc_{k,1} = T \cdot K \cdot \max_{k \in \mathcal{K}} sl_k$
 - Maßnahmen abgedeckt $ina_{k,1,i} = 1 \; \forall \; i \; \text{und} \; (k,1) \in \mathcal{B}$

- Zweiter bis 1+I-ter Plan je Team k: Pendelplan von Team k für Maßnahme i von/zu Depot
 - Kosten $nc_{k,n} = sl_k \cdot (p_{i,k} + \hat{d}_i \cdot 2)$
 - Maßnahmen abgedeckt $ina_{k,n,i} = 1$ und $(k,n) \in \mathcal{B}$

Subproblem (SP): Zielfunktion Neuer Plan für Team k'

Minimiere reduzierte Kosten bestehend aus:

- ullet Kosten für Arbeitszeit $sl_{k'} \cdot az_{k'}$ abzüglich
- Dualwert $\sigma_{k'}$ für Team-Restriktion und
- Dualwerte π_i für umgesetzte Maßnahmen in Plan $x_{k',i,t}$

$$\min F = sl_{k'} \cdot az_{k'} - \sigma_{k'} - \sum_{i} \sum_{t=EST_i}^{EST_i} x_{k',i,t} \cdot \pi_i$$

Subproblem (SP): Restriktionen Neuer Plan für Team k'

Angepasste Nebenbedingungen für Zeitfenstereinhaltung:

• Team k' muss nicht alle Maßnahmen i durchführen

$$\sum_{t=EST_i}^{LST_i} x_{k',i,t} \le 1 \qquad i \in \mathcal{I}$$

Maßnahme niemals außerhalb des Zeitfensters durchführen

$$\sum_{t \in \mathcal{T} \setminus \{EST_i, \dots, LST_i\}} x_{k', i, t} = 0 \qquad i \in \mathcal{I}$$

Rest wie im monolithischen Modell: Nutze NB 1-5 mit Definitionsbereich $k \in \{k'\}$ anstelle von $k \in \mathcal{K}$

Grundgerüst der Spaltengenerierung

- Master-RMIP mit Dummy-Plänen initialisieren
- Hauptschleife
 - Master-RMIP lösen o Dualwerte π_i, σ_k
 - ullet Subproblem (SP) je Team lösen o neue Pläne
 - ullet ZF-Wert von SP < 0? o Plan in Master hinzufügen
 - Andernfalls: Schleife verlassen
- Löse MIP mit Fixierungen: Verbiete Team-/Maßnahmen-Zuordnungen, welche in keinem gewählten Plan in finaler Master-RMIP-Lösung vorkommen

$$\forall k, i \colon \sum_{n \colon (k,n) \in \mathcal{B}} \alpha_{k,n} \cdot ina_{k,n,i} = 0 \implies x_{k,i,t} \stackrel{!}{=} 0 \ \forall \ t$$

Heuristische Lösung der Subprobleme

- Master-RMIP für Dualwertbestimmung π_i, σ_k
- ullet Löse Subproblem für Team k als integriertes Partitionierungsund Sequenzierungsproblem mittels LocalSolver
- Lösung des reduzierten monolithischen Modells mittels MIP-Solver oder LocalSolver

Gliederung



- Integrierte Touren- und Ablaufplanung für Windpark-Wartungsteams
- Pormalisierung als gemischt-ganzzahliges Optimierungsmodell
- Nachbarschaftliches Suchverfahrer
- Lösungsansatz basierend auf Spaltengenerierung
- Numerische Ergebnisse

Numerische Ergebnisse (1/3) Kleine Instanz: MIP-Solver vs. Heuristik

30s Zeitlimit, 20 Instanzen

Numerische Ergebnisse (2/3)

l l Leibniz l o 2 Universität l o o 4 Hannover

Diverse größere Instanzen

4 Teams, 8 Standorte, 16 Maßnahmen

Instanz	Instanz LocalSolver		CG-MP_Guro	bi-SP_LS-FixedLS	CG-MP_Gurobi-SP_LS-FixedGurobi	
IIIStariz	Gap	Rechenzeit	Gap	Gap Rechenzeit		Rechenzeit
1	0,00%	86,00	0,00%	1123,05	0,00%	1061,30
2	0,33%	62,00	0,00%	1813,05	0,00%	1751,45
3	0,00%	141,00	0,00%	1822,10	0,00%	1760,39
4	0,00%	126,00	0,00%	1294,04	0,00%	1232,36
5	0,00%	93,00	0,00%	2375,09	0,00%	2313,36
6	0,00%	111,00	0,00%	2814,09	0,00%	2752,51
7	0,00%	62,00	0,00%	1540,11	0,00%	1515,18
8	1,19% 83,00 0,00% 1302,04		1302,04	0,00%	1350,60	
9	0,00%	1781,00	0,00%	1289,07	0,00%	1227,37
10	0,00%	104,00	0,00%	1849,08	0,00%	1787,38
11	0,00%	178,00	0,00%	2369,15	0,00%	2307,40
12	0,00%	90,00	0,00%	2254,12	0,00%	2192,41
13	1,01%	65,00	0,00%	919,04	0,00%	845,23
14	0,00%	63,00	0,04%	1722,12	0,04%	1660,39
15	0,00%	92,00	0,00%	1501,05	0,00%	1439,42
16	0,00%	122,00	0,00%	1449,05	0,00%	1395,51
17	0,00%	102,00	0,00%	1601,09	0,00%	1541,19
18	0,00%	62,00	2,96%	1927,08	0,41%	1898,39
19	0,00%	62,00	0,00%	1712,11	0,00%	1650,45
20	0,00%	74,00	0,00%	1376,05	0,00%	1340,59
Mittelwert	0,13%	177,95	0,15%	1702,63	0,02%	1651,14

Numerische Ergebnisse (3/3)

Größere Instanzen: Erster Vergleich aller Methoden

8 Teams, 16 Standorte und 32 Maßnahmen

o reams, to etamorte and oz masmannen						
		Zielfunktionswerte				
Instanz		MIP-Mono	MIP-CG-Monofix	LS-Mono	LS-CG-LS-Monofix	LS-CG-MIP-Monofix
	1	-	2470	2470	2580	2470
	2	-	2460	2420	2530	2410
Instanz		Rechenzeiten				
	1	3600	7122	3600	3734	3699
	2	3600	6850	3600	3692	6236
Instanz			Anzahl Pläne			
	1	-	453	-	192	192
	2	-	438	-	184	184
		MIP-Mono	MIP-CG-Monofix	LS-Mono	LS-CG-LS-Monofix	LS-CG-MIP-Monofix

	LS-Mono LS-Monofix			
Instanz	Letzte Verbesserung			
1	0 73			
2	0 20			

Vielen Dank für Ihre Aufmerksamkeit!

Literatur

- Byon, E., L. Ntaimo und Y. Ding (2010). Optimal maintenance strategies for wind turbine systems under stochastic weather conditions. *IEEE Transactions on Reliability* 59(2), S. 393–404.
- Dai, L., M. Stålhane und I. B. Utne (2015). Routing and scheduling of maintenance fleet for offshore wind farms. *Wind Engineering* 39(1), S. 15–30.
- Irawan, C. A., D. Ouelhadj, D. Jones, M. Stålhane und I. B. Sperstad (2017). Optimisation of maintenance routing and scheduling for offshore wind farms. *European Journal of Operational Research* 256(1), S. 76–89.
- Kovacs, A., G. Erdős, Z. J. Viharos und L. Monostori (2011). A system for the detailed scheduling of wind farm maintenance. *CIRP annals* 60(1), S. 497–501.
- Salo, E., D. McMillan und R. Connor (2018). Value from free-text maintenance records: converting wind farm work orders into quantifiable, actionable information using text mining. Analysis of Operating Wind Farms 2018.
- Sinha, Y. und J. A. Steel (2015). A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis. *Renewable and Sustainable Energy Reviews* 42, S. 735–742.
- Stålhane, M., L. M. Hvattum und V. Skaar (2015). Optimization of routing and scheduling of vessels to perform maintenance at offshore wind farms. *Energy Procedia* 80, S. 92–99.
- Tautz-Weinert, J., N. Y. Yürüşen, J. J. Melero und S. J. Watson (2019). Sensitivity study of a wind farm maintenance decision-A performance and revenue analysis. *Renewable energy* 132, S. 93–105.